Medical Cannabis Program Lowers Chronic Pain Opioid Prescriptions

“Access to medical cannabis through a state-regulated program was associated with significantly lower rates of opioid prescriptions among adults with chronic pain, according to findings recently published in JAMA Internal Medicine.

The study included 204 adults enrolled in the New York State medical cannabis program, which provided monthly access to medical cannabis through a dispensary pharmacist, and 142 ultimately obtained the treatment. The data spanned from September 2018 through July 2023. Researchers measured prescription opioid receipt via mean daily dose in morphine milliequivalents (MME) and compared it with how many days’ worth of cannabis individuals were dispensed each month based on pharmacists’ reports.

After 18 months, the mean daily MME decreased by 22%, from 73 to 57.

The authors noted that instead of measuring medical cannabis exposure via its legalization status, they directly analyzed pharmacy dispensation amounts, a more accurate indicator of uptake. Randomized clinical trials are needed to see whether medical cannabis reduces opioid use, they added.”

https://pubmed.ncbi.nlm.nih.gov/41481315

https://jamanetwork.com/journals/jama/fullarticle/2843608

Extract engineering of Cannabis sativa yields novel antibacterial cannabinoids targeting Staphylococcus aureus and methicillin-resistant Staphylococcus aureus

“Cannabis sativa is a phytochemically rich plant producing over 500 compounds, with cannabinoids recognized as its most bioactive constituents.

However, the natural exploration and exploitation of novel, pharmacologically active cannabinoids remain limited due to their trace abundance in the plant. To address this challenge, we employed an extract engineering strategy in which enriched fractions of major cannabinoids were chemically transformed through oxone/acetone oxidation under mild conditions.

This approach enabled the purification of seven cannabinoid analogs, including rare and previously undescribed compounds, in appreciable quantities. The structures of these analogs were elucidated using high-resolution mass spectrometry combined with comprehensive 1D and 2D NMR spectroscopy.

Antibacterial susceptibility assay revealed that out of seven compounds, Compound 1, 5, and 7 exerted significant inhibitory activity against both Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) pathogens.

A Checkerboard study revealed the synergistic interaction between active hits and Rifampin in both S. aureus and MRSA. The biofilm-based assay demonstrated the antibiofilm potential of the identified hits. The mechanistic exploration elucidated the cell membrane-based targeting of the potent hits, validated through scanning electron microscopy. Moreover, the Propidium iodide assay performed using flow cytometry and fluorescence microscopy revealed the membrane disruption effect of the identified hits. In addition, the ATP quantification study demonstrated a major decline in ATP levels along with an augmentation in ROS production in the MRSA pathogen.

Thus, this work establishes extract engineering as a powerful strategy to unlock rare cannabinoid scaffolds and highlights their potential as leads for combating multidrug-resistant Staphylococcus infections.”

https://pubmed.ncbi.nlm.nih.gov/41478197


“Cannabis sativa
 has diverse phytochemical composition and therapeutic potential.”

“In summary, comprehensive antistaphylococcal evaluation of the cannabinoid-based molecules demonstrated strong antibacterial activity against both S. aureus and MRSA pathogens, along with synergistic interaction when combined with standard drugs. Notably, the potent molecules expressed low propensity for the development of resistance in the MRSA strain. Moreover, the antibiofilm action of the potent hits highlighted their curative role…”

https://www.sciencedirect.com/science/article/abs/pii/S0045206825013288?via%3Dihub

Vaporized cannabis versus placebo for acute migraine: A randomized, double-blind, placebo-controlled crossover trial

Objective: To assess the efficacy of cannabis for the treatment of acute migraine.

Background: Preclinical and retrospective studies suggest cannabinoids may be effective in migraine treatment. However, there have been no randomized clinical trials examining the efficacy of cannabinoids for acute migraine.

Methods: In this randomized, double-blind, placebo-controlled, crossover trial, adults with migraine treated up to four separate migraine attacks, one each with vaporized (1) 6% Δ9-tetrahydrocannabinol (THC) (THC-dominant), (2) 11% cannabidiol (CBD) (CBD-dominant), (3) 6% THC + 11% CBD, and (4) placebo cannabis flower in a randomized order. Washout period between treated migraine attacks was ≥1 week. The primary endpoint was pain relief, and secondary endpoints were pain freedom and most bothersome symptom freedom, all assessed at 2-h post-vaporization.

Results: Ninety-two participants were enrolled and randomized, and 247 migraine attacks were treated. THC + CBD was superior to placebo at achieving pain relief (67.2% vs. 46.6%, odds ratio [95% confidence interval] 2.85 [1.22, 6.65], p = 0.016), pain freedom (34.5% vs. 15.5%, 3.30 [1.24, 8.80], p = 0.017), and most bothersome symptom freedom (60.3% vs. 34.5%, 3.32 [1.45, 7.64], p = 0.005) at 2 h, as well as sustained pain freedom at 24 h and sustained most bothersome symptom freedom at 24 and 48 h. THC-dominant was superior to placebo for pain relief (68.9% vs. 46.6%, 3.14 [1.35, 7.30], p = 0.008) but not pain freedom or most bothersome symptom freedom at 2 h. CBD-dominant was not superior to placebo for pain relief, pain freedom, or most bothersome symptom freedom at 2 h. There were no serious adverse events.

Conclusion: Acute migraine treatment with 6% THC + 11% CBD was superior to placebo at 2-h post-treatment with sustained benefits at 24 and 48 h.”

https://pubmed.ncbi.nlm.nih.gov/41469488

“Many people with migraine self-treat with cannabinoids or are interested in using cannabinoids to treat migraine. In this double-blind study, people with migraine treated up to 4 migraine attacks, 1 attack was treated with each of 3 vaporized cannabis flower treatments (THC 6%, CBD 11%, and THC 6% + CBD 11%) or placebo cannabis flower without THC or CBD, within the first 4 h of migraine attack onset. Four puffs of cannabis flower containing THC 6% + CBD 11% was superior to placebo at treating migraine attacks, though the study did not examine the long-term effects of frequent use.”

https://headachejournal.onlinelibrary.wiley.com/doi/10.1111/head.70025

Targeting bladder cancer: Potent anti-cancer effects of cannabichromene and delta-9-tetrahydrocannabinol-rich Cannabis sativa strains

Objective: This study aimed to explore the anticancer potential of Cannabis sativa (C. sativa) strains, specifically PARIS, Dairy Queen (DQ), and super cannabidiol (sCBD), on bladder cancer cells. Given the increasing interest in cannabinoids like cannabichromene (CBC) and delta-9-tetrahydrocannabinol (THC) for their therapeutic properties, we evaluated their cytotoxic effects on urothelial carcinoma (UC) cell lines and their ability to inhibit cell migration and induce apoptosis in both two-dimensional cell models and three-dimensional ex vivo organ cultures (EVOCs).

Methods: C. sativa strains were screened for their cytotoxicity against UC cell lines (HTB-4 and HTB-9) using XTT assays. Their phytocannabinoid content was analyzed using high-performance liquid chromatography. We employed fluorescence-activated cell-sorting to determine apoptosis and cell cycle, migration assays to determine cell migration, and EVOCs to evaluate the cytotoxic effect on UC. Gene expression was determined by quantitative polymerase chain reaction.

Results: Three commercial C. sativa strains, PARIS, DQ, and sCBD, were found to have the most potent anticancer effects on bladder cancer cells. All extracts contain CBC and THC at different concentrations. In XTT assays on UC cell lines, PARIS had a half-maximal inhibitory concentration (IC50) of 21.58 μg/mL, while DQ and sCBD had similar cytotoxic activity with IC50 values for 48-h treatment of 17.99 μg/mL and 17.88 μg/mL, respectively. DQ and sCBD extracts were found to significantly reduce cell migration and increase the percentage of cells in S phase and G2/M phase within the cell population. In EVOCs, the extracts initiated cell death with the expression of apoptosis-related genes increased following exposure to treatment.

Conclusion: The findings suggest that C. sativa strains PARIS, DQ, and sCBD, containing CBC and THC, exhibit significant anticancer activity against UC cell lines and ex vivo models. These results underscore the therapeutic potential of CBC- and THC-rich C. sativa extracts in bladder cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/41467200

“This study highlights the potential of commercially available cannabis extracts in inhibiting UC tumors through programmed cell death, the expression of apoptosis-related genes, and cell migration inhibition. The findings emphasize the significance of cannabinoid-specific content over total cannabinoid concentrations in determining their cytotoxic effects. While personalized medicine based on specific strain compositions remains a distant goal, certain cannabinoids like CBC, THC, and CBD show promise in exerting cytotoxic effects.”

“Overall, these findings underscore the potential of cannabis-derived compounds as therapeutic agents in cancer treatment and warrant further investigation.”

https://www.sciencedirect.com/science/article/pii/S2214388225000335?via%3Dihub

Antibacterial Effect of Cannabinoids on Bacteria Associated with Persistent Endodontic Infections

“Cannabinoids have been shown to have effective antibacterial applications.

With the limitations of current intracanal endodontic medicaments and the rise of bacterial resistance, it is important to investigate novel treatment strategies for endodontic infections. The aim of this study was to test the antibacterial efficacy of cannabinoids on bacteria in persistent endodontic infections: Enterococcus faecalisStreptococcus mutans, and Fusobacterium nucleatum.

Planktonic bacteria were exposed to a negative control (no exposure), a positive control (3% NaOCl), and the experimental groups Cannabidiol (CBD), Cannabinol (CBN), and Tetrahydrocannabinol (THC). The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were also investigated. Biofilms were cultured and treated with cannabinoids. A crystal violet assay (CVA) and live/dead analysis assessed the biofilm degradation and inhibition, respectively. A statistical analysis was performed using an ANOVA.

CBD, CBN, and THC reached a MIC for both E. faecalis and S. mutans in planktonic forms. The MBC was found for the tested cannabinoids on planktonic E. faecalis. No MBC was found for S. mutans. The live/dead analysis of E. faecalis and S. mutans biofilms showed a decrease in the viability of the biofilm with an increased cannabinoid concentration. The CVA revealed that cannabinoids only degrade the E. faecalis biofilm. Planktonic F. nucleatum had no MIC for tested cannabinoids.

Cannabinoids have inhibitory effects on E. faecalis and S. mutans in the planktonic and biofilm states. No inhibitory effects of F. nucleatum were found at tested concentrations of all three cannabinoids.

The findings suggest that cannabinoids have distinct antibacterial effects on certain pathogens associated with persistent endodontic infections.”

https://pubmed.ncbi.nlm.nih.gov/41465362

https://www.mdpi.com/1422-0067/26/24/11936

Natural cannabinoids effects on glutamatergic and dopaminergic neurotransmission in a transgenic model of Alzheimer’s disease

Background: Previous results demonstrated that chronic treatment with a combination of two natural cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), at non-psychotropic doses reduces cognitive decline, as well as the extracellular glutamate levels and the basal excitability in the hippocampus of APP/PS1 mice. In the present study, we aimed to elucidate whether this modulation of hippocampal excitability exerted by natural cannabinoids could affect the dopaminergic activity in limbic areas related to non-cognitive symptoms of Alzheimer’s disease (AD) in our animal model.

Method: We used glutamate and dopamine biosensors, along with fiber photometry techniques, to evaluate the levels of these neurotransmitters in the hippocampus and nucleus accumbens (NAcc), respectively. Experiments were conducted in anaesthetized animals for recording under an electrical hippocampal stimulation protocol, or in awake animals for recording during behavioral evaluations (novel object recognition, open field, sociability and prepulse inhibition tests).

Result: Chronic treatment with THC and CBD reversed the increased prominence and frequency of glutamate peaks observed in the hippocampus of APP/PS1 animals during the novel object recognition test at early stages of the AD-like process. At more advanced stages, APP/PS1 mice exhibited alterations in dopamine dynamics in the NAcc, which were compatible with psychotic-like traits observed in this animal model of AD. Interestingly, these alterations were partially modulated by chronic treatment with these natural cannabinoids.

Conclusion: Our results reveal that the combination of THC and CBD modulates glutamatergic activity in the hippocampus at early stages of the AD process and that, likely related to this, reduces dopaminergic alterations in limbic areas at advanced stages. Thus, these natural cannabinoids may alleviate both cognitive and non-cognitive symptoms occurring in AD, supporting their clinical development as a pleiotropic therapeutic alternative for this neurodegenerative disease.”

https://pubmed.ncbi.nlm.nih.gov/41454444

https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz70855_102846

Therapeutic potential of chronic CBD:THC co-treatment on disease-relevant behaviors of female TAU58/2 mice

Background: Limited therapeutic success and side effect profile of traditional but also novel antibody-based therapies for Alzheimer’s disease (AD) underline the need for alternatives. Cannabinoids have anti-inflammatory effects, are easily accessible and generally well tolerated. A dosage-dependent “entourage” effect has been described for phytocannabinoids such as cannabidiol (CBD) administered in combination with delta-9-tetrahydrocannabinol (THC). The effects of cannabinoid combination treatment on tau pathology, one of the major neuropathological hallmarks of AD, is poorly understood. Here, the effects of chronic treatment with CBD and THC on disease-relevant behaviors of female TAU58/2 transgenic mice were evaluated for the first time.

Method: Six-month-old TAU58/2 transgenic females (n = 28) and wild type-like control littermates (n = 22) were chronically treated with CBD+THC (50:3 mg/kg/day, i.p.) or vehicle for five weeks. Behavioral testing started after three weeks of treatment and included assessment of motor function, spatial and social recognition memory, anxiety and sensorimotor gating.

Result: Treatment and genotype effects on individual behavioral tests are summarized in Table 1. TAU58/2 transgenic females exhibited pronounced deficits in motor function, sensorimotor gating impairments, a prominent anxiolytic-like phenotype and subtle spatial memory deficits. Chronic CBD:THC co-treatment significantly improved aspects of motor function in pole test and accelerod. Moreover, anxiolytic-like behavior of TAU58/2 mice was partially reduced by cannabinoid treatment. Cannabinoids also showed the potential to improve spatial memory impairment of transgenic mice, though not confirmed by a significant treatment effect. Social recognition memory and sensorimotor gating were not affected by the treatment.

Conclusion: Here, long-term CBD:THC treatment at 50:3 mg/kg/day shows subtle but promising therapeutic effects in middle-aged TAU58/2 mice. Thereby, this study is the first to provide evidence for the therapeutic potential of CBD:THC co-treatment on tauopathy-related behavioral symptoms. Since CBD alone did not improve deficits of adult TAU58/2 mice in a previous study, these findings underline the potential of multi-cannabinoid therapy for the treatment of AD and contribute to the evaluation of the most efficient cannabinoid ratio. Ongoing tissue analysis addressing tau and inflammatory markers will reveal further insights into the underlying molecular mechanisms.”

https://pubmed.ncbi.nlm.nih.gov/41447176

https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz70859_099683

Resurrected Ancestral Cannabis Enzymes Unveil the Origin and Functional Evolution of Cannabinoid Synthases

“Cannabinoids, such as tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA), are bioactive and medicinally relevant compounds found in the cannabis plant (Cannabis sativa L.). These three compounds are synthesised from a single precursor, cannabigerolic acid (CBGA), through regioselective reactions catalysed by different cannabinoid oxidocyclase enzymes.

Despite the importance of cannabinoid oxidocyclases for determining cannabis chemotype and properties, the functional evolution and molecular mechanism of this enzyme family remain poorly understood. To address this gap, we combined ancestral sequence reconstruction and heterologous expression to resurrect and functionally characterise three ancestral cannabinoid oxidocyclases.

Results showed that the ability to metabolise CBGA originated in a recent ancestor of cannabis and that early cannabinoid oxidocyclases were promiscuous enzymes producing all three THCA, CBDA and CBCA. Gene duplication and diversification later facilitated enzyme subfunctionalisation, leading to extant, highly-specialised THCA and CBDA synthases. Through rational engineering of these ancestors, we designed hybrid enzymes which allowed identifying key amino acid mutations underlying the functional evolution of cannabinoid oxidocyclases. Ancestral and hybrid enzymes also displayed unique activities and proved to be easier to produce heterologously than their extant counterparts.

Overall, this study contributes to understanding the origin, evolution and molecular mechanism of cannabinoid oxidocyclases, which opens new perspectives for breeding, biotechnological and medicinal applications.”

https://pubmed.ncbi.nlm.nih.gov/41454532

“Cannabinoids are specialised metabolites produced by the plant Cannabis sativa L. (cannabis).”

https://onlinelibrary.wiley.com/doi/10.1111/pbi.70475

Letters From the Field: Challenges and Opportunities in the Development of Botanical Drugs From Cannabis

“Cannabis and cannabis-derived products (CCDPs) have gained recognition for their therapeutic potential, driving legal and social shifts worldwide. In the United States, state-level medical cannabis programs exist alongside the federal drug development framework, which remains the gold standard for ensuring safety and efficacy.

The Food and Drug Administration (FDA) botanical drug development guidance provides a structured approval pathway for plant-derived products, including CCDPs, accounting for their unique chemical complexity. Despite this guidance, significant gaps persist in preclinical and clinical data, particularly for minor cannabinoids.

Development of botanical drugs from cannabis is further complicated by regulatory oversight from the Drug Enforcement Administration, which constrains the cultivation, handling, and distribution of cannabis and imposes logistical and security requirements during drug development.

This article discusses the unique experience of drug developers navigating the scientific and regulatory challenges inherent in advancing CCDPs toward FDA drug approval. Collaborative efforts among federally compliant drug developers, regulatory bodies, healthcare providers, academic institutions, investors, and patients/patient advocacy groups are critical to generate rigorous, reproducible evidence to support the safe and effective use of CCDPs in medical conditions where they hold the greatest therapeutic potential. Such partnerships can advance studies that elucidate cannabinoid pharmacology, optimize dosing with rigorously characterized materials via clinically relevant routes, and identify clinical outcomes that are meaningful to patients.

Advancing CCDPs through federally compliant drug development pathways will enable the translation of promising botanical therapies into safe, effective, and evidence-based treatments, ultimately informing clinical practice and benefiting patients.”

https://pubmed.ncbi.nlm.nih.gov/41421888

https://www.clinicaltherapeutics.com/article/S0149-2918(25)00407-2/abstract

Selective anti-cancer effects of cannabidiol and Δ9-tetrahydrocannabinol via PI3K/AKT/mTOR inhibition and PTEN restoration in ovarian cancer cells

Introduction: Ovarian cancer is a highly lethal gynecological malignancy, often diagnosed at advanced stages. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) demonstrate anti-tumor activity in various cancers including ovarian cancer through multiple signaling pathways and are increasingly explored as adjuncts to chemotherapy. However, the effects of CBD and THC combination treatment and its specific mechanisms remain unclear. This study evaluated the anti-tumor effects of CBD, THC, and their combination on SKOV3 and A2780 ovarian cancer cells, focusing on phosphorylation-dependent regulation of the PI3K/AKT/mTOR pathway.

Methods: SKOV3, A2780, and IOSE cells were treated with CBD, THC, and equimolar CBD: THC combinations. Cytotoxicity was assessed using Sulforhodamine B assay, while synergistic interactions were analyzed by the Chou-Talay method using CompuSyn. Cell cycle distribution and apoptosis were evaluated, and phosphorylation of PI3K, AKT, mTOR, and PTEN was examined by Western blotting.

Results: The CBD: THC combination treatment showed potent, selective cytotoxicity at 48 h, with lower IC50 values than in non-tumor IOSE80 cells. The Chou–Talalay method validated a synergistic effect between CBD and THC. The combination treatment induced cell cycle arrest and enhanced apoptosis. Western blot analysis exhibited that equimolar CBD: THC (2.5:2.5 μM) markedly reduced phosphorylation of PI3K, AKT, and mTOR, while increasing phosphorylation of PTEN, thereby reactivating tumor-suppressive signaling.

Conclusion: These findings highlight that CBD: THC combination treatment effectively inhibited ovarian cancer cell growth and invasion via oncogenic PI3K/AKT/mTOR signaling and reactivates PTEN. The combination may represent a promising targeted therapeutic approach, warranting further in vivo validation to elucidate its clinical potential.”

“Our study elucidated the multi-faceted anti-cancer properties of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), particularly in their combination treatment, by demonstrating potent and selective anti-cancer activities against ovarian cancer cells without harming non-tumor IOSE cells, establishing a favorable therapeutic index.

The combination treatment of CBD and THC exhibited concentration- and ratio-dependent synergy, inhibiting proliferation, and hindering metastatic potential through impaired migration and invasion while inducing apoptosis and attributing to mitochondrial membrane depolarization.

Mechanistically, we revealed that CBD and THC, particularly the CBD: THC combination effectively suppresses the PI3K/AKT/mTOR signaling axis by downregulating the phosphorylation of p-PI3K, p-Akt, and p-mTOR, whereas restoring the function of the tumor suppressor PTEN. This dual modulation of oncogenic and tumor-suppressive pathways endorses the therapeutic potential of CBD: THC treatment as a targeted anti-cancer strategy.

Our findings warrant further in functional phosphatase activity to confirm the reactivation of PTEN lipid phosphatase enzyme, and vivo validation and clinical exploration to optimize cannabinoid-based regimens for ovarian cancer treatment, especially considering the precise concentration- and ration-dependent nature of their interactions.”

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1693129/full

“Cannabis compounds show unexpected power against ovarian cancer”

“Scientists have discovered that key compounds from cannabis—CBD and THC—show surprisingly strong effects against ovarian cancer cells. Used together, they slow cell growth, reduce colony formation, and may even block the cancer’s ability to spread. Even more promising, the treatment caused minimal harm to healthy cells and appears to work by restoring a disrupted signaling pathway that fuels tumor growth”

https://www.sciencedaily.com/releases/2025/12/251215025315.htm