The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids.

“Co-administration of opioids and cannabinoids can enhance pain relief even when administered on different days. Repeated systemic administration of morphine has been shown to enhance the antinociceptive effect of tetrahydrocannbinol (THC) administered 12hours later, and repeated microinjection of the cannabinoid receptor agonist HU-210 into the ventrolateral periaqueductal gray (PAG) has been shown to enhance the antinociceptive effect of morphine administered one day later. The primary objective of the present study was to test the hypotheses that this cannabinoid/opioid interaction is bidirectional. Experiment 1 showed that microinjection of morphine into the ventrolateral PAG of male Sprague-Dawley rats twice daily for 2days enhanced the antinociceptive effect of HU-210 measured one day later. In Experiment 2, twice daily systemic injections of THC enhanced the antinociceptive effect of morphine administered one day later. These results complement the previously mentioned studies by showing that morphine and cannabinoid interactions are bidirectional and that the ventrolateral PAG plays an important role in this effect. In contrast to the PAG, repeated administration of HU-210 or the cannabinoid receptor agonist, WIN 55,212-2, into the RVM had a neurotoxic effect. Rats became ill following repeated cannabinoid administration whether given alone or with morphine. Presumably, this neurotoxic effect was caused by the high cannabinoid concentration following RVM microinjection because rats did not become ill following repeated systemic THC administration. These findings indicate that alternating opioid and cannabinoid treatment could produce a longer lasting and more potent analgesia than either compound given alone.”

http://www.ncbi.nlm.nih.gov/pubmed/23063785

The effects of hempseed meal intake and linoleic acid on Drosophila models of neurodegenerative diseases and hypercholesterolemia

Molecules and Cells

“Hemp seed is rich in polyunsaturated fatty acids (PUFAs), which have potential as therapeutic compounds for the treatment of neurodegenerative and cardiovascular disease.

In this study, we assessed the effects of the intake of  hempseed meal (HSM) and PUFAs on oxidative stress, cytotoxicity and neurological phenotypes, and cholesterol uptake, using Drosophila models.

HSM intake was shown to reduce H(2)O(2) toxicity markedly, indicating that HSM exerts a profound antioxidant effect.

Meanwhile, intake of HSM, as well as linoleic or linolenic acids (major PUFA components of HSM) was shown to ameliorate Aβ42-induced eye degeneration, thus suggesting that these compounds exert a protective effect against Aβ42 cytotoxicity.

Additionally, intake of HSM or linoleic acid was shown to reduce cholesterol uptake significantly.

Moreover, linoleic acid intake has been shown to delay pupariation, and cholesterol feeding rescued the linoleic acid-induced larval growth delay, thereby indicating that linoleic acid acts antagonistically with cholesterol during larval growth.

In conclusion, our results indicate that HSM and linoleic acid exert inhibitory effects on both Aβ42 cytotoxicity and cholesterol uptake, and are potential candidates for the treatment of Alzheimer’s disease and cardiovascular disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21331775 

“A number of previous studies have shown that polyunsaturated fatty acids (PUFAs) and phytosterols are critically important for human health. Hempseed is a rich source of plant oil, which contains more than 80% PUFAs and 3922-6719 mg/kg of phytosterols (e.g., sitosterol and campesterol). The fatty acids in hempseed oil include a variety of essential fatty acids, including linoleic acid ”

https://link.springer.com/article/10.1007%2Fs10059-011-0042-6

Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease

CB2 is a potent regulator of immune responses making it a prime target for the treatment of inflammatory diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/21626285

The emerging role of the endocannabinoid system in cardiovascular disease

“… the EndoCannabinoid System has been implicated in a growing number of physiological functions of the nervous system and various peripheral organs, and its modulation turned out to hold tremendous therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders, neuropathic pain, multiple sclerosis, and spinal cord injury to cancer, glaucoma, osteoporosis, atherosclerosis, myocardial infarction, stroke, hypertension, and obesity/ metabolic syndrome to name just a few…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791499/?tool=pubmed