Scientists believe marijuana compound could fight cancer

“Scientists in California believe they may have discovered a compound in marijuana that can reduce the aggressiveness of some forms of cancer.

The San Francisco Gate reports on the data that has been years in the making. While marijuana has been shown to help reduce nausea and pain in cancer patients, scientists believe that a compound in marijuana has the ability to “turn off” the activity of a gene responsible for metastasis in breast and other types of cancers.

The research team is working out of San Francisco’s California Pacific Medical Center Research Institute and have been working for years on the study. The compound they’re focused on, called cannabidiol, does not produce the psychotropic high associated with marijuana.

Last year, the team published a small study showing the positive effects of cannabidiol on mice. New data is about to be released that expands upon the previous results that the researchers hope will help propel the study even further.

“The preclinical trial data is very strong, and there’s no toxicity. There’s really a lot of research to move ahead with and to get people excited,” said Sean McAllister, who is working alongside scientist Pierre Desprez in the study.

Desprez and McAllister believe that their merging of separate areas of study was serendipitous.

Desprez had been studying the protein ID-1, which he found to play an important role in how cancer could spread. McAllister, on the other hand, was focused on studying anabolic steroids in drug abuse. He soon became focused on with the role non-psychotropic cannabidiol, or CBD, interacts with cancer.

McAllister, after hearing an internal seminar from Desprez on his studies of ID-1, came up with the question “How effective would cannabidiol be on targeting metastatic cancer cells?”

The two then teamed up, with Desprez armed with ID-1 cancer-causing protein, and McAllister with CBD, his cancer-fighting compound.

For their experimentation, the doctors exposed ID-1 to CBD in a petri dish. In a shocking result, the ID-1, the cancer-causing protein, reverted to a normal state and stopped acting “crazy.”

“We thought we did the experiment the wrong way,” McAllister said of the overwhelming results.

However, their results proved to be consisted.

“I told Sean, ‘Maybe your drug is working through my gene,’ ” Desprez said.

What the researchers have discovered thus far in their research is that CBD turns off the overexpression of ID-1, which prevents it from traveling to foreign tissues. Thus, the metastasization – cancer’s fatal ability – is blocked.

In the wake of their positive results, the doctors were forced to emphasize that the CBD will only work in the presence of high levels of ID-1 and these do not include all cancerous tumors but, rather, aggressive, metastatic cells. High levels have been found in leukemia, colorectal, pancreatic, lung, ovarian, brain and other cancers.”
Read more: http://www.irishcentral.com/news/Scientists-believe-marijuana-compound-could-fight-cancer-170689736.html#ixzz29rQbc2oS

Cannabinoids in intestinal inflammation and cancer.

Abstract

“Emerging evidence suggests that cannabinoids may exert beneficial effects in intestinal inflammation and cancer. Adaptive changes of the endocannabinoid system have been observed in intestinal biopsies from patients with inflammatory bowel disease and colon cancer. Studies on epithelial cells have shown that cannabinoids exert antiproliferative, antimetastatic and apoptotic effects as well as reducing cytokine release and promoting wound healing. In vivo, cannabinoids – via direct or indirect activation of CB(1) and/or CB(2) receptors – exert protective effects in well-established models of intestinal inflammation and colon cancer. Pharmacological elevation of endocannabinoid levels may be a promising strategy to counteract intestinal inflammation and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/19442536

[The endocannabinoid system as a target for the development of new drugs for cancer therapy].

Image result for recenti progressi in medicina

“Studies on the main bioactive components of Cannabis sativa, the cannabinoids, and particularly delta 9-tetrahydrocannabinol (THC), led to the discovery of a new endogenous signalling system that controls several physiological and pathological conditions: the endocannabinoid system. This comprises the cannabinoid receptors, their endogenous agonists–the endocannabinoids–and proteins for endocannabinoid biosynthesis and inactivation.

Recently, evidence has accumulated indicating that stimulation of cannabinoid receptors by either THC or the endocannabinoids influence the intracellular events controlling the proliferation and apoptosis of numerous types of cancer cells, thereby leading to anti-tumour effects both in vitro and in vivo.

This evidence is reviewed here and suggests that future anti-cancer therapy might be developed from our knowledge of how the endocannabinoid system controls the growth and metastasis of malignant cells.”

http://www.ncbi.nlm.nih.gov/pubmed/12723496

Endocannabinoid system modulation in cancer biology and therapy.

Cover image

“The discovery of the endocannabinoid system and the recognition of its potential impact in a plethora of pathological conditions, led to the development of therapeutic agents related to either the stimulation or antagonism of CB1 and CB2 cannabinoid receptors, the majority of which are actually tested in preclinical studies for the pharmacotherapy of several diseases. Endocannabinoid-related agents have been reported to affect multiple signaling pathways and biological processes involved in the development of cancer, displaying an interesting anti-proliferative, pro-apoptotic, anti-angiogenic and anti-metastatic activity both in vitro and in vivo in several models of cancer. Emerging evidence suggests that agonists of cannabinoid receptors, which share the useful property to discern between tumor cells and their non-transformed counterparts, could represent novel tumor-selective tools to treat cancer in addition to their already exploited use as palliative drugs to treat chemotherapy-induced nausea, pain and anorexia/weight loss in cancer patients. The aim of this review is to evidence and update the recent emerging knowledge about the role of the endocannabinoid system in cancer biology and the potentiality of its modulation in cancer therapy.”  http://www.ncbi.nlm.nih.gov/pubmed/19559362

http://www.sciencedirect.com/science/article/pii/S1043661809000863

Changes in the Endocannabinoid System May Give Insight into new and Effective Treatments for Cancer

Logo of nihpa

“The endocannabinoid system comprises specific cannabinoid receptors such as Cb1 and Cb2, the endogenous ligands (anandamide and 2-arachidonyl glycerol among others) and the proteins responsible for their synthesis and degradation. This system has become the focus of research in recent years because of its potential therapeutic value several disease states. The following review describes our current knowledge of the changes that occur in the endocannabinoid system during carcinogenesis and then focuses on the effects of anandamide on various aspects of the carcinogenic process such as growth, migration, and angiogenesis in tumors from various origins.

Marijuana and its derivatives have been used in medicine for centuries, however, it was not until the isolation of the psychoactive component of Cannabis sativa (Δ9-tetrahydrocannabinol; Δ9-THC) and the subsequent discovery of the endogenous cannabinoid signaling system that research into the therapeutic value of this system reemerged. Ongoing research is determining that regulation of the endocannabinoid system may be effective in the treatment of pain (Calignano et al., 1998; Manzanares et al., 1999), glaucoma (Voth and Schwartz, 1997), and neurodegenerative disorders such as Parkinson’s disease (Piomelli et al., 2000) and multiple sclerosis (Baker et al., 2000). In addition, cannabinoids might be effective anti-tumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture (De Petrocellis et al., 1998; Ruiz et al., 1999; Sanchez et al., 1998, 2001) and in laboratory animals (Galve-Roperh et al., 2000).

In conclusion, the endocannabinoid system exerts a myriad of effects on tumor cell growth, progression, angiogenesis, and migration. With a notable few exceptions, targeting the endocannabinoid system with agents that activate cannabinoid receptors or increase the endogenous levels of AEA may prove to have therapeutic benefit in the treatment of various cancers. Further studies into the downstream consequences of AEA treatment are required and may illuminate other potential therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791688/

Turned-Off Cannabinoid Receptor Turns On Colorectal Tumor Growth

“CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“We’ve found that CB1 expression is lost in most colorectal cancers, and when that happens a cancer-promoting protein is free to inhibit cell death,” said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president of The University of Texas M. D. Anderson Cancer Center.

DuBois and collaborators from Vanderbilt-Ingram Cancer Center also show that CB1 expression can be restored with an existing drug, decitabine. They found that mice prone to developing intestinal tumors that also have functioning CB1 receptors develop fewer and smaller tumors when treated with a drug that mimics a cannabinoid receptor ligand. Ligands are molecules that function by binding to specific receptors. Agonists are synthetic molecules that mimic the action of a natural molecule.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

http://www.sciencedaily.com/releases/2008/08/080801074056.htm

Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer – ABCNews

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on.

Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.

It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists (synthetic molecules that mimic the action of natural molecules) are being evaluated now to treat the side effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and than treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.””

http://abcnews.go.com/Health/Healthday/story?id=5496283&page=1

Study: Marijuana Could Stop Growth of Colon Cancer Cells

“The administration of the non-psychotropic cannabis plant constituent cannabidiol (CBD) is protective in an experimental model of colon cancer, according to preclinical trial data published online in the Journal of Molecular Medicine.

Investigators at the University of Naples assessed the effect of CBD on colon carcinogenesis in mice. Researchers reported that CBD administration was associated with cancerous tumor reduction and reduced cell proliferation.

Authors wrote: “Although cannabidiol has been shown to kill glioma cells, to inhibit cancer cell invasion and to reduce the growth of breast carcinoma and lung metastases in rodents, its effect on colon carcinogenesis has not been evaluated to date. This is an important omission, since colon cancer affects millions of individuals in Western countries. In the present study, we have shown that cannabidiol exerts (1) protective effects in an experimental model of colon cancer and (2) antiproliferative actions in colorectal carcinoma cells.”

Authors also acknowledged that CBD possesses “an extremely safe profile in humans.” They concluded, “[O]ur findings suggest that cannabidiol might be worthy of clinical consideration in colon cancer prevention.””

http://www.opposingviews.com/i/society/drug-law/latest-science-non-psychotropic-cannabinoid-inhibits-colon-cancer-cell

Marijuana takes on colon cancer

“The chemicals in marijuana could put the brakes on colon cancer, according to new research. That doesn’t mean smoking a joint will help, though, as the chemicals only form part of the process.

Raymond DuBois and colleagues at the University of Texas in Houston discovered that a key receptor for cannabinoids, which are found in marijuana, is turned off in most types of human colon cancer.

Without this receptor, a protein called survivin, which stops cells from dying, increases unchecked and causes tumour growth.

To better understand the role that the receptor, called CB1, plays in cancer progression, the researchers manipulated its expression in mice that had been genetically engineered to spontaneously develop colon tumours.

“When we knocked out the receptor, the number of tumors went up dramatically,” says DuBois. Alternatively, when mice with normal CB1 receptors were treated with a cannabinoid compound, their tumours shrank.

Dual attack

The findings suggest a two-step treatment plan for colon cancer, as well as for other cancers that might be linked to this receptor.

First, turn the CB1 receptor back on, and then activate it with drugs currently in development that mimic marijuana. But how to turn it on?

The researchers found that in human colon cancer cells, the gene that makes the receptor is blocked by a process called methylation, in which a small chemical group is added to the DNA.

Treating the cells with decitibine – a demethylating drug already approved for use in humans – removed the chemical group and the gene began making the receptor. Drugs that mimic marijuana might then activate the receptor, although DuBois did not test this.”

 

http://www.newscientist.com/article/dn14451-marijuana-takes-on-colon-cancer.html

Cannabinoids and the digestive tract.

“In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors.

Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16596788