Medicinal use of non-prescribed cannabis: a cross-sectional survey on patterns of use, motives for use, and treatment access in the Netherlands

Background: Despite the Netherlands having one of the world’s oldest medical cannabis programs, the majority of people who use cannabis for medicinal purposes continue to rely on non-prescribed sources. This study investigates patterns of use, motives for use, perceived effectiveness, and barriers to accessing prescribed cannabis among individuals self-medicating with non-prescribed cannabis.

Methods: A cross-sectional online survey was conducted between January and April 2023, using convenience sampling primarily via social media. Participants (N = 1059) were adults (18 years or older) residing in the Netherlands who self-reported current use of non-prescribed cannabis-based products to manage physical or mental health symptoms.

Results: Cannabis was used to manage a wide range of conditions, most commonly chronic pain, sleep disorders, depression, and ADHD/ADD, with three out of four participants reporting use for multiple conditions. Most participants obtained cannabis from coffeeshops, although one in four also reported home cultivation as a source. Participants typically smoked cannabis with tobacco, reported (near-)daily use for therapeutic purposes, and indicated a monthly expenditure of €100. The majority was not aware of the THC and CBD content of their products. Perceived effectiveness was rated as high, and more than half of those with a history of prescription medication use reported substituting cannabis for these medications. Only a minority of participants had ever used, or were currently using, prescribed cannabis. Commonly cited barriers included perceived lower quality, higher cost, and lower ease of access compared with non-prescribed cannabis.

Conclusions: The widespread use of non-prescribed cannabis for medicinal purposes in the Netherlands reflects both unmet health needs and barriers within the regulated medical cannabis system. Risky use practices – such as smoking cannabis with tobacco and using products without knowing their cannabinoid content – raise public health concerns. The findings highlight the need for harm reduction strategies and policies that better align medical cannabis regulation with patients’ real-world behaviours and care needs.”

https://pubmed.ncbi.nlm.nih.gov/41331499

https://link.springer.com/article/10.1186/s42238-025-00355-y

The Endocannabinoid System: Pharmacological Targets and Therapeutic Potential in CNS Disorders

“The endocannabinoid system (ECS) influences a wide range of brain functions, including synaptic transmission, neuroplasticity, emotion, and immune regulation within the central nervous system, with CB1 and CB2 receptors mediating various neurophysiological and pathophysiological outcomes. Thus, growing interest in its therapeutic potential has prompted extensive research into how cannabinoid receptors contribute to the pathophysiology of neurological and psychiatric disorders, particularly CB1 and CB2.

This review has integrated findings from studies published between 2015 and 2025, covering conditions, like depression, anxiety, pain, multiple sclerosis, and Parkinson’s disease. We have also examined recent advances in receptor pharmacology and experimental technologies, including cryo-EM, optogenetics, and chemogenetics.

Although ECS-targeted therapeutics hold considerable promise, some key challenges remain in establishing safe and effective dosing protocols and integrating these approaches into clinical frameworks.

This review has provided an updated perspective on the system’s role in brain health and its potential to inform future therapeutic directions. Thus, ECS-targeted strategies may become increasingly important in managing and treating central nervous system disorders.”

https://pubmed.ncbi.nlm.nih.gov/41178765/

https://www.eurekaselect.com/article/151549

Measuring the Effects of Cannabis on Anxiety and Depression Among Cancer Patients

pubmed logo

“Introduction: Cancer patients are increasingly turning to cannabis products to modulate physical and psychological symptoms despite limited evidence supporting their efficacy. We aimed to explore cancer patients’ self-reported anxiety and depression symptoms in response to cannabis use.

Methods: This longitudinal study examined how patient-reported anxiety and depression symptoms varied according to the dose, ratio of tetrahydrocannabinol (THC) to cannabidiol (CBD), and route of administration of cannabis products among cancer patients. Change in self-reported anxiety and depression symptoms was evaluated in 1962 cancer patients after 30 days of enrollment in the Minnesota Medical Cannabis Program.

Results: Anxiety scores improved more in patients taking higher doses of CBD (> 14.3 mg/day) compared to those taking lower doses (< 4.6 mg/day) and among patients using enteral cannabis products. Depression scores also improved more for patients taking enteral products.

Discussion: Anxiety scores varied according to the dose of cannabis, the ratio of THC to CBD, and the route of administration of cannabis products. In contrast, depression scores only varied according to the route of administration.

Conclusions: This study of cancer patients in Minnesota suggests that patterns of cannabis use that include relatively higher doses of CBD taken enterally may improve the quality of life of cancer survivors who report anxiety and depression. This study constructs a foundation for future research to improve the tailoring of cannabis-related educational materials to patients’ needs and inform the training of healthcare professionals on how to recommend cannabis products for cancer survivors.”

https://pubmed.ncbi.nlm.nih.gov/41163433/

“Given the high prevalence of anxiety and depression symptoms among cancer patients, along with the potential for cannabis products to alleviate these serious psychological symptoms, this study suggests specific patterns of use that may improve the quality of life of cancer survivors.”

https://onlinelibrary.wiley.com/doi/10.1002/cam4.71342

Cannabidiol and Beta-Caryophyllene: chronic inflammatory pain

pubmed logo

“While chronic pain is challenging to manage, it always co-exists with depression. Currently, chronic pain and depression are usually treated separately with distinct approaches, yet effectiveness remains elusive. Consequently, the development of integrated therapeutic strategies for pain while addressing depression is a high public health priority and unmet need that affects millions of people.

This study aims to determine if the combination of the two phytocannabinoids Beta-Caryophyllene (BCP) and cannabidiol (CBD) is effective for chronic pain while simultaneously showing antidepressant effects.

We used a chronic inflammatory pain model (Complete Freund’s Adjuvant, CFA) and a battery of pain and depression-like behavior tests in mice. Proteomics and immunohistochemistry (IHC) were used to explore the potential mechanisms of the effect of the combination on pain and depression.

We found that mice treated with the CBD and BPC combination produced a synergistic pain-relieving effect in the chronic inflammatory pain model and exhibited antidepressant properties.

Our IHC data also show that the CBD and BCP combination significantly reduced the neuroinflammation produced by CFA, and the proteomics showed downregulation of selected proteins involved in inflammation by the combination, compared to the individual effects of CBD and BCP.

In conclusion, our current findings show that, in the CFA pain model, the combination of CBD and BCP produces a synergistic pain-relief effect while also having antidepressant properties. Additionally, our data show that the anti-inflammatory action of this combination may explain its beneficial effects on pain and depression. Therefore, our data suggest this combination as a potentially effective treatment for chronic pain and related depression.”

https://pubmed.ncbi.nlm.nih.gov/41120021/

“In conclusion, our current findings show that, in the CFA pain model, the combination of CBD and BCP produces a synergistic analgesic effect while also having antidepressant properties. Additionally, our data show that the anti-inflammatory action of this combination may explain its beneficial effects on pain and depression. Therefore, our data suggest this combination as a potentially effective treatment for the co-occurrence of chronic pain and depression.”

https://www.sciencedirect.com/science/article/pii/S1043661825004128?via%3Dihub

Cannabidiol reverses depression-like behaviors by enhancing hippocampal synaptic plasticity in rats with chronic restraint stress

pubmed logo

“Background and aim: Major depressive disorder is a prevalent psychiatric condition associated with impaired neuroplasticity, particularly in the hippocampus. Although selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed, their delayed onset and adverse effects highlight the need for alternative therapies. Cannabidiol (CBD), a non-psychotomimetic cannabinoid, has shown antidepressant-like properties, but its mechanistic link to hippocampal synaptic plasticity remains unclear. This study aimed to evaluate the effects of CBD on depression-like behaviors and hippocampal neuroplasticity in rats subjected to chronic restraint stress (CRS).

Materials and methods: Sixty male Wistar rats were randomly divided into six groups: Non-stressed vehicle (NV), CRS vehicle (SV), escitalopram-treated CRS (SE, 10 mg/kg), and CBD-treated CRS at 10, 30, or 100 mg/kg (SC10, SC30, and SC100). Rats were subjected to CRS for 28 days and treated daily through intraperitoneal injection. Depression-like behaviors were assessed using the forced swim test (FST) and sucrose preference test (SPT). Locomotor activity was evaluated through the open-field test (OFT). Hippocampal dendritic spine density (Golgi-Cox staining) and long-term potentiation (LTP, electrophysiology) were measured on day 28.

Results: CRS induced behavioral despair (↑ immobility in FST) and anhedonia (↓ sucrose preference in SPT), accompanied by reduced hippocampal spine density. At all doses, CBD significantly reduced immobility, comparable to escitalopram. Notably, only CBD at 100 mg/kg and escitalopram reversed anhedonia. All CBD-treated groups showed an increase in dendritic spine density, with SC10 producing the greatest enhancement. Moreover, CBD at 100 mg/kg markedly improved hippocampal LTP at 1 h and 2 h post-stimulation, an effect not observed with escitalopram. Locomotor activity remained unaffected.

Conclusion: CBD demonstrated potent antidepressant-like effects in a CRS rat model, alleviating behavioral despair and anhedonia while enhancing hippocampal dendritic spine density and synaptic strength. These findings suggest CBD as a promising candidate for stress-related mood disorders, with mechanistic actions distinct from conventional SSRIs and potential utility in patients unresponsive to current therapies.”

https://pubmed.ncbi.nlm.nih.gov/41113223/

https://veterinaryworld.org/Vol.18/September-2025/22.php

A novel cannabidiol:tetramethylpyrazine cocrystal (CBD:TMP, ART12.11) improves the efficacy and bioavailability of cannabidiol in reducing stress-induced depressive and anxiety symptoms

pubmed logo

“Clinical and pre-clinical research has reported promising outcomes for cannabidiol (CBD) in treating mood and anxiety disorder symptoms. However, the pharmacokinetic properties of CBD, such as low and variable bioavailability and low aqueous solubility, limit its therapeutic applications.

This study investigated the effects of ART12.11, a novel cannabidiol:tetramethylpyrazine (CBD:TMP) cocrystal, that aims to improve the pharmacotherapeutic potential of CBD by combining it with the co-former tetramethylpyrazine (TMP) to improve CBD’s pharmaceutical properties.

We used an integrative combination of translational behavioural pharmacology alongside targeted gene and protein expression analyses to characterize the potential anti-depressant and anxiolytic-like effects of ART12.11 in male Sprague Dawley rats, following exposure to chronic stress. In addition, we investigated blood plasma concentrations of CBD and TMP following oral administration of ART12.11 to examine bioavailability.

We report that oral administration of ART12.11 reversed stress-induced behavioural deficits and produced significant anti-depressant and anxiolytic-like behavioural effects, which were superior to oral administration of CBD alone, TMP alone, or the co-administration of a non-crystalline mixture of CBD and TMP. Further, we report that ART12.11 resulted in higher blood plasma levels of CBD and its major metabolite, indicating superior bioavailability. Finally, we demonstrate that ART12.11 increased activation of the endocannabinoid and serotonergic systems directly in the prefrontal cortex, ventral hippocampus, and nucleus accumbens.

Collectively, our findings indicate that ART12.11 may offer significant advantages over delivering CBD by more traditional approaches in the treatment of mood and anxiety disorders.”

https://pubmed.ncbi.nlm.nih.gov/40854502/

https://www.sciencedirect.com/science/article/abs/pii/S0278584625002325?via%3Dihub

Acute and chronic effects of medicinal cannabis use on anxiety and depression in a prospective cohort of patients new to cannabis

“Introduction: Medicinal cannabis has mixed evidence for treating anxiety and depression, yet patients frequently use it as a treatment. This observational study evaluated the effects of medicinal cannabis initiation in adults with clinically significant anxiety and/or depression over a 6-month period.

Methods: Adults with clinically significant anxiety and/or depression initiating medicinal cannabis use in Maryland, USA completed ecological momentary assessment (EMA) and longitudinal follow-up evaluations. Hospital Anxiety and Depression Scale (HADS) assessments were completed at baseline and 1, 3, and 6 months after medicinal cannabis initiation. EMA measures were completed at baseline and daily for 8 weeks after cannabis initiation with measures collected before each cannabis use and at time of expected peak effect. Changes in anxiety and depression were evaluated using linear mixed effect models.

Results: Significant decreases from baseline in anxiety and depression were observed, with mean scores dropping below clinically significant levels within three months of initiation. EMA data indicated that most participants selected THC-dominant cannabis and acute reductions in anxiety, depression, and perceived driving ability along with increased ratings of feeling “high”. Acute effects were dose-dependent: 10-15 mg of oral THC and at least 3 puffs of vaporized cannabis yielded the most robust reductions in anxiety and depression.

Conclusions: Initiation of THC-dominant medicinal cannabis was associated with acute reductions in anxiety and depression, and sustained reductions in overall symptom severity over a 6-month period. Controlled clinical trials are needed to further investigate the efficacy and safety of medicinal cannabis for acute anxiety and depression symptom management.”

https://pubmed.ncbi.nlm.nih.gov/40623642/

“In this prospective, observational study, medicinal cannabis use was associated with significant decreases in self-reported anxiety and depression compared with pre-cannabis use initiation baseline assessments among individuals with clinically significant anxiety and/or depression. Reductions in anxiety and depression were observed acutely following individual episodes of cannabis use and overall symptom reductions were sustained over the six-month period of observation.”

https://www.sciencedirect.com/science/article/abs/pii/S0165032725012716?via%3Dihub

Adolescent cannabidiol treatment produces antidepressant-like effects without compromising long-term cognition in rats

pubmed logo

“Background: Recent preclinical studies have shown sex-dependent antidepressant-like responses of cannabidiol in adolescence, which were dependent on biological sex, early-life stress, and dose. In particular, cannabidiol (10 mg/kg) induced acute and sustained antidepressant-like responses in adolescent male rats, while it lacked efficacy in females. This follow-up study aimed at further characterizing cannabidiol’s effects in adolescence, in an attempt to overcome female unresponsiveness, while also evaluating its long-term safety profile in adulthood.

Methods: Groups of adolescent rats of both sexes were treated (ip) with cannabidiol (10, 30, 60 mg/kg) or vehicle (1 ml/kg) for 7 days. Acute (30 min post-injection) and repeated (24 h post-treatment) antidepressant-like responses were measured in the forced-swim test. Brains were collected to evaluate several neurochemical correlates in the hippocampus (CBR1, CBR2, BDNF, and cell proliferation) after adolescent cannabidiol exposure (acute and repeated). Some rats were left undisturbed until adulthood, when long-term effects on cognition were measured in the Barnes maze (short- and long-term memory) or affective-like responses in the forced-swim test. Data was analyzed with two-way ANOVAs (independent variables: sex and treatment).

Results: While the dose of 10 mg/kg of cannabidiol induced antidepressant-like effects in adolescent rats, higher doses had no effect in adolescent rats of both sexes. No changes were observed in any of the hippocampal neuroplasticity markers evaluated. Adolescent cannabidiol exposure did not induce long-term changes in cognitive performance or affective-like behavior.

Conclusions: Overall, our data suggest that adolescent cannabidiol treatment produces dose-dependent antidepressant-like effects of moderate magnitude without compromising long-term cognition in rats.”

https://pubmed.ncbi.nlm.nih.gov/40522606/

“To conclude, our data suggest that adolescent cannabidiol treatment produces dose-dependent antidepressant-like effects without compromising long-term cognition in rats. In particular, it reinforces prior studies by including more doses of cannabidiol tested during adolescence, while demonstrating efficacy mainly in male rats. Based on the literature, the combination of another antidepressant with cannabidiol might be a good strategy for attempting to induce efficacy in adolescent female rats, and should be further explored. Since no molecular print could be found to parallel the antidepressant-like potential of cannabidiol in adolescence, future studies should explore other avenues while searching for the specific role of sex hormones in the lack of response in females. Finally, and in line with the results that demonstrate that cannabidiol improves cognitive performance, this study adds to this existing literature by providing long-term results on this topic following adolescent cannabidiol exposure in rats of both sexes.”

https://link.springer.com/article/10.1007/s43440-025-00750-5

Cannabichromene, a key non-psychotropic phytocannabinoid in treatment of major depressive disorder: in silico and in vivo explorations

pubmed logo

“Cannabichromene, a non-psychotropic cannabinoid with antioxidant and neuroprotective properties, is hypothesized to possess antidepressant potential.

This study aimed to evaluate cannabichromene’s depression-alleviating effects in mice exposed to chronic unpredictable mild stress and unstressed mice using a combination of in silico and in vivo approaches.

Initially, gene targets associated with major depressive disorder were identified through GeneCards, while cannabichromene’s target genes were predicted using SwissTargetPrediction. Overlapping targets were visualized using Venny software, and protein-protein interaction networks were constructed with the STRING database.

The cannabinoid receptor two genes, encoding the cannabinoid 2 receptor, emerged as a key shared target. Molecular docking studies revealed that cannabichromene exhibited a strong binding affinity to cannabinoid 2 receptors (docking score: – 9.4) compared to cannabidiol (CBD) (- 8.8) and Δ9-tetrahydrocannabinol (- 9.1). For in vivo analysis, male Swiss albino mice were subjected to chronic unpredictable mild stress for 3 weeks to induce depression-like behavior. Cannabichromene (10 and 20 mg/kg) and imipramine (15 mg/kg) were administered for 21 days.

Cannabichromene at 20 mg/kg significantly reduced immobility in stressed mice, like imipramine, without affecting locomotor activity. Additionally, both cannabichromene and imipramine reduced elevated plasma nitrite and corticosterone levels and inhibited monoamine oxidase-A activity in the brain. Cannabichromene also reversed stress-induced catalase suppression.

In conclusion, cannabichromene revealed a relatively substantial antidepressant character with chronic unpredictable mild stress model of depression in Swiss albino male mice, likely through interaction with cannabinoid 2 receptors encoded by the cannabinoid 2 gene, as ratified via in silico modeling and in vivo findings. This highlights cannabichromene’s potential as a novel therapeutic agent for depression after further in vitro and clinical assessments in other models.”

https://pubmed.ncbi.nlm.nih.gov/40358684/

https://link.springer.com/article/10.1007/s00210-025-04236-2

Efficacy of a Neuroimmune Therapy Including Pineal Methoxyindoles, Angiotensin 1-7, and Endocannabinoids in Cancer, Autoimmune, and Neurodegenerative Diseases

pubmed logo

“Purpose: Recent advancements in psycho-neuro-endocrine-immunology indicate that numerous noncommunicable diseases (NCDs) originate from disruptions in the cytokine immune network, resulting in chronic inflammatory responses. This persistent low-degree inflammation is attributed to deficiencies in crucial endogenous anti-inflammatory neuroendocrine systems, including the pineal gland, the endocannabinoid system, and the angiotensin-converting enzyme 2 / angiotensin 1-7 axis.

The administration of pineal methoxyindoles (melatonin, 5-methoxytryptamine), cannabinoids, and angiotensin 1-7 may entail potential therapeutic benefits for NCDs, particularly for patients who do not respond to conventional treatments.

Patients and methods: This study evaluates the safety and efficacy of a neuroimmune regimen comprising melatonin (100 mg/day at night), 5-methoxytryptamine (30 mg in the early afternoon), angiotensin 1-7 (0.5 mg twice daily), and cannabidiol (20 mg twice daily) in 306 patients with NCDs, including advanced cancer, autoimmune diseases, neurodegenerative disorders, depression, and cardiovascular disease.

Results: The neuroimmune regimen successfully halted cancer progression in 68% of cancer patients, who also reported improvements in mood, sleep, and relief from anxiety, pain, and fatigue. In patients with autoimmune diseases, the treatment effectively controlled the disease process, remarkable in cases of multiple sclerosis. Additionally, positive outcomes were observed in patients with Parkinson’s disease, Alzheimer’s disease, and depression.

Conclusion: Randomized controlled trials are required to assess this therapeutic approach for NCDs that includes endogenous neuroendocrine molecules regulating immune responses in an anti-inflammatory manner.”

https://pubmed.ncbi.nlm.nih.gov/40330271/

“This study highlights the potential of leveraging endogenous molecules to treat NCDs by modulating cell proliferation, inflammation, immune responses, metabolism, and neurological functions. The findings suggest that a neuroimmune regimen incorporating melatonin, angiotensin 1–7, and other bioactive compounds could offer a low-cost, minimally toxic therapeutic approach.”

https://www.dovepress.com/efficacy-of-a-neuroimmune-therapy-including-pineal-methoxyindoles-angi-peer-reviewed-fulltext-article-CIA