Expression of cannabinoid 1 and, 2 receptors and the effects of cannabinoid 1 and, 2 receptor agonists on detrusor overactivity associated with bladder outlet obstruction in rats.

 

Image result for BMC urology

“This study investigated changes in the expression of cannabinoid (CB) receptors and the effects of CB1 and CB2 agonists on detrusor overactivity (DO) associated with bladder outlet obstruction (BOO) in rats.

CONCLUSIONS:

CB1 and CB2 receptors, especially CB1, play a role in the pathophysiology of BOO-associated DO, and could serve as therapeutic targets.”  https://www.ncbi.nlm.nih.gov/pubmed/29284441

“The results of this study suggest that CB1 and CB2 receptors in the bladder, particularly CB1 receptors, play a significant role in the pathophysiology of BOO-associated DO, and could serve as diagnostic biomarker and therapeutic targets in this disorder.”

Abnormal cannabidiol confers cardioprotection in diabetic rats independent of glycemic control.

Cover image

“Chronic GPR18 activation by its agonist abnormal cannabidiol (trans-4-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol; abn-cbd) improves myocardial redox status and function in healthy rats.

Here, we investigated the ability of abn-cbd to alleviate diabetes-evoked cardiovascular pathology and the contribution of GPR18 to this effect.

Collectively, the current findings present evidence for abn-cbd alleviation of diabetes-evoked cardiovascular anomalies likely via GPR18 dependent restoration of cardiac adiponectin-Akt-eNOS signaling and the diminution of myocardial oxidative stress.”

https://www.ncbi.nlm.nih.gov/pubmed/29274332

http://www.sciencedirect.com/science/article/pii/S0014299917308336

Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts.

Image result for Arch Oral Biol.

“Approximately 65 million adults in the US have periodontitis, causing tooth loss and decreased quality of life.

 Cannabinoids modulate immune responses, and endocannabinoids are prevalent during oral cavity inflammation. Targets for intervention in periodontal inflammation are cannabinoid type 1 and 2 receptors (CB1R, CB2R), particularly CB2R because its levels increase during inflammation.

We previously demonstrated that SMM-189 (CB2R inverse agonist) decreased pro-inflammatory cytokine production in primary microglial cells. The hypothesis of this study was that cannabinoids anandamide (AEA), HU-308 (CB2R selective agonist), and SMM-189 decrease pro-inflammatory IL-6 and MCP-1 production by primary human periodontal ligament fibroblasts (hPDLFs) stimulated with P. gingivalis LPS, TNF-α, or IL-1β.

CONCLUSION:

The effective inhibition of LPS, TNF-α, IL-1β stimulated IL-6 and MCP-1 production by CB2R ligands in hPDLFs suggests that targeting the endocannabinoid system may lead to development of novel drugs for periodontal therapy, aiding strategies to improve oral health.”

https://www.ncbi.nlm.nih.gov/pubmed/29274621

Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats.

Image result for neuropsychopharmacology

“Exposure to a traumatic event may result in the development of Post-Traumatic Stress Disorder (PTSD).

Endocannabinoids are crucial modulators of the stress response, interfere with excessive retrieval and facilitate the extinction of traumatic memories. Exposure therapy, combined with pharmacotherapy, represents a promising tool for PTSD treatment.

We investigated whether pharmacological manipulations of the endocannabinoid system during extinction learning ameliorates the behavioral changes induced by trauma exposure.

Our findings suggest that drugs potentiating endocannabinoid neurotransmission may represent promising tools when combined to exposure-based psychotherapies in the treatment of PTSD.”

https://www.ncbi.nlm.nih.gov/pubmed/29265107

https://www.nature.com/articles/npp2017305

Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats.

Publication Cover

“This study investigated the effect of rimonabant, a cannabinoid receptor type 1 (CB1) antagonist, on calcium/calmodulin dependent protein kinase II (CaMKII) and CB1 in chronic intermittent hypoxia (CIH).

Rimonabant had a protective effect against CIH.” https://www.ncbi.nlm.nih.gov/pubmed/29264962

http://www.tandfonline.com/doi/abs/10.1080/00207454.2017.1420069

 

Activation of cannabinoid receptor type 2 by JWH133 alleviates bleomycin-induced pulmonary fibrosis in mice.

Related image

“Activation of cannabinoid receptor type 2 has been shown to have anti-fibrosis function in skin and heart.

In this research, we aimed to investigate the role of cannabinoid receptor type 2 in pulmonary fibrosis in vitro and in vivo.

Our research indicated that activating cannabinoid receptor type 2 by a pharmacological method might be a potential strategy for pulmonary fibrosis.”  https://www.ncbi.nlm.nih.gov/pubmed/29262578

“In conclusion, we demonstrate that activating cannabinoid receptor type 2 by selective agonist JWH133 is a potential strategy for pulmonary fibrosis. Our researches offer a new choice for this life-threatening disease.” http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=21975&path[]=69664

Discovery of Selective Cannabinoid CB2 Receptor Agonists by High-Throughput Screening.

Related image

“The endocannabinoid system (ECS) plays a diverse role in human physiology ranging from the regulation of mood and appetite to immune modulation and the response to pain.

Drug development that targets the cannabinoid receptors (CB1 and CB2) has been explored; however, success in the clinic has been limited by the psychoactive side effects associated with modulation of the neuronally expressed CB1 that are enriched in the CNS. CB2, however, are expressed in peripheral tissues, primarily in immune cells, and thus development of CB2-selective drugs holds the potential to modulate pain among other indications without eliciting anxiety and other undesirable side effects associated with CB1 activation.

As part of a collaborative effort among industry and academic laboratories, we performed a high-throughput screen designed to discover selective agonists or positive allosteric modulators (PAMs) of CB2. Although no CB2 PAMs were identified, 167 CB2 agonists were discovered here, and further characterization of four select compounds revealed two with high selectivity for CB2 versus CB1.

These results broaden drug discovery efforts aimed at the ECS and may lead to the development of novel therapies for immune modulation and pain management with improved side effect profiles.”

https://www.ncbi.nlm.nih.gov/pubmed/29257918

 

Restoration of osteogenic differentiation by overexpression of cannabinoid receptor 2 in bone marrow mesenchymal stem cells isolated from osteoporotic patients.

 Journal Cover

“Cannabinoid receptor 2 (CNR2) has a critical role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). CNR2 expression was found to be downregulated in osteoporotic patients.

The present study aimed to investigate the functionality of CNR2 in restoring osteogenic differentiation and mineralization of BMSCs isolated from osteoporotic patients.

The results demonstrated that overexpression of CNR2 in osteoporotic BMSCs increased ALP activity, promoted expression of osteogenic genes and enhanced deposition of mineralized extracellular matrix. In addition, phosphorylation of p38 MAPK was found to be increased by overexpression of CNR2.

In conclusion, the present study indicated that restoration of CNR2 recovered the osteogenic differentiation of BMSCs isolated from osteoporotic patients. This finding may provide a novel strategy for a treatment approach for osteoporosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29250156

https://www.spandidos-publications.com/10.3892/etm.2017.5369

From “Azalla” to Anandamide: Distilling the Therapeutic Potential of Cannabinoids

Biological Psychiatry Home

“Cannabis has held a unique place in the hearts and minds of people since time immemorial: some have exalted its properties and considered it to be sacred; others have reviled it, considering it a root cause of social evil.

The Assyrians, who lived about 3000 years ago, documented the effects of cannabis on clay tablets. They referred to the plant according to its various uses: as “azalla,” when used as a medical agent; as hemp; and as “gan-zi-gun-nu”—“the drug that takes away the mind”   These seemingly contradictory properties—a substance that can be both a therapeutic agent and a corrupting psychoactive drug—have continued to puzzle us over the ensuing centuries.

As early as the 11th century, excessive cannabis use was suggested to be a cause of “moral degeneracy.”  On the other hand, the ostensible therapeutic value of cannabis was documented extensively in the early 19th century by Sir William B. O’Shaughnessy, an Irish physician working in Calcutta, India.

Given the critical role of the endocannabinoid system in modulating anxiety, it is clear that compounds that can modulate this system offer great promise as therapeutic agents for psychiatric disorders. It is therefore not surprising that the concept of medical marijuana is compelling to laypersons, clinicians, and researchers alike.

While there is not yet a robust body of literature supporting any specific psychiatric indication (despite the regulatory approval in some states of medical marijuana for specific psychiatric disorders), active lines of investigation of therapeutic targets within the endocannabinoid system offer hope for better treatment options.

The evidence at present suggests that the question of whether cannabinoids are good or bad is not dichotomous—it is likely both good and bad depending on the context of use, including dose, duration of exposure, and an individual’s genetic vulnerabilities. Therefore, the challenge that remains is to distill the good therapeutic effects of cannabinoids and thus weed out “gan-zi-gun-nu” from “azalla.””

http://www.biologicalpsychiatryjournal.com/article/S0006-3223(17)32207-2/fulltext

 

Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

Biochemistry (Moscow)

“Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/29223163