“Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.” https://www.ncbi.nlm.nih.gov/pubmed/28758944 http://www.mdpi.com/1422-0067/18/8/1617]]>
Category Archives: Endocannabinoid System
Cannabinoid receptor 2-63 RR variant is independently associated with severe necroinflammation in HIV/HCV coinfected patients.
“This is the first study to analyze the impact of the rs35761398 variant of the CNR2 gene leading to the substitution of GLN (Q) of codon 63 of the cannabinoid receptor 2 (CB2) with ARG (R) on the clinical presentation of chronic hepatitis in HIV/HCV coinfected patients.
This study shows interesting interplay between the CB2-RR variant and liver necroinflammation in chronic hepatitis patients with HIV/HCV coinfection, an observation of clinical value that coincides with the interest in the use of the CB2 agonists and antagonists in clinical practice emerging from the literature.”
Effects of Centrally Administered Endocannabinoids and Opioids on Orofacial Pain Perception in Rats.
“Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within orofacial region are largely unknown. In this study we tried to determine whether the increase of cannabinoid and opioid concentration in cerebrospinal fluid affects impulse transmission between the motor centers localized in the vicinity of the third and fourth cerebral ventricles.
We demonstrated that in the orofacial area analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by MOR and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand.
Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.”
https://www.ncbi.nlm.nih.gov/pubmed/28771697 http://onlinelibrary.wiley.com/doi/10.1111/bph.13970/abstract]]>Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies.
“The increase in lifespan during the last 50 years, mainly in developed countries, has originated a progressive elevation in the incidence of chronic neurodegenerative disorders, for which aging is the key risk factor. This fact will definitively become the major biomedical challenge during the present century, in part because the expectation of a persisting elevation in the population older than 65 years over the whole population and, on the other hand, because the current lack of efficacious therapies to control these disorders despite years of intense research. This chapter will address this question and will stress the urgency of developing better neuroprotective and neurorepair strategies that may delay/arrest the progression of these disorders, reviewing the major needs to solve the causes proposed for the permanent failures experienced in recent years, e.g., to develop multitarget strategies, to use more predictive experimental models, and to identify early disease biomarkers. This chapter will propose the cannabinoids and their classic (e.g., endocannabinoid receptors and enzymes) and nonclassic (e.g., peroxisome proliferator-activated receptors, transcription factors) targets as a useful strategy for developing novel therapies for these disorders, based on their broad-spectrum neuroprotective profile, their activity as an endogenous protective system, the location of the endocannabinoid targets in cell substrates critical for neuronal survival, and their ability to serve for preservation and rescue, but also for repair and/or replacement, of neurons and glial cells against cytotoxic insults.” https://www.ncbi.nlm.nih.gov/pubmed/28750802 http://www.sciencedirect.com/science/article/pii/S0076687917301787?via%3Dihub]]>
Endocannabinoid Transport Proteins: Discovery of Tools to Study Sterol Carrier Protein-2.
“The endocannabinoid (eCB) neurotransmitter system regulates diverse neurological functions including stress and anxiety, pain, mood, and reward. Understanding the mechanisms underlying eCB regulation is critical for developing targeted pharmacotherapies to treat these and other neurologic disorders. Cellular studies suggest that the arachidonate eCBs, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are substrates for intracellular binding and transport proteins, and several candidate proteins have been identified. Initial evidence from our laboratory indicates that the lipid transport protein, sterol carrier protein 2 (SCP-2), binds to the eCBs and can regulate their cellular concentrations. Here, we present methods for evaluating SCP-2 binding of eCBs and their application to the discovery of the first inhibitor lead molecules. Using a fluorescent probe displacement assay, we found SCP-2 binds the eCBs, AEA (Ki=0.68±0.05μM) and 2-AG (Ki=0.37±0.02μM), with moderate affinity. A series of structurally diverse arachidonate analogues also bind SCP-2 with Ki values between 0.82 and 2.95μM, suggesting a high degree of tolerance for arachidonic acid head group modifications in this region of the protein. We also report initial structure-activity relationships surrounding previously reported inhibitors of Aedis aegypti SCP-2, and the results of an in silico high-throughput screen that identified structurally novel SCP-2 inhibitor leads. The methods and results reported here provide the basis for a robust probe discovery effort to fully elucidate the role of facilitated transport mediated by SCP-2 in eCB regulation and function.” https://www.ncbi.nlm.nih.gov/pubmed/28750817 http://www.sciencedirect.com/science/article/pii/S007668791730174X?via%3Dihub ]]>
Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition.
“The endocannabinoid system plays a role in regulating bone mass and bone cell activity and inactivation of the type 1 (Cnr1) or type 2 (Cnr2) cannabinoid receptors influences peak bone mass and age-related bone loss. As the Cnr1 and Cnr2 receptors have limited homology and are activated by different ligands, we have evaluated the effects of combined deficiency of Cnr1 and 2 receptors (Cnr1/2-/- ) on bone development from birth to old age and studied ovariectomy induced bone loss in female mice. The Cnr1/2-/- mice had accelerated bone accrual at birth when compared with wild type littermates, and by 3 months of age, they had higher trabecular bone mass. They were also significantly protected against ovariectomy-induced bone loss due to a reduction in osteoclast number. The Cnr1/2-/- mice had reduced age-related bone loss when compared with wild-type due to a reduction in osteoclast number. Although bone formation was reduced and bone marrow adiposity increased in Cnr1/2-/- mice, the osteoclast defect outweighed the reduction in bone formation causing preservation of bone mass with aging. This contrasts with the situation previously reported in mice with inactivation of the Cnr1 or Cnr2 receptors individually where aged-related bone loss was greater than in wild-type. We conclude that the Cnr1 and Cnr2 receptors have overlapping but nonredundant roles in regulating osteoclast and osteoblast activities. These observations indicate that combined inhibition of Cnr1 and Cnr2 receptors may be beneficial in preventing age-related bone loss, whereas blockade of individual receptors may be detrimental.” https://www.ncbi.nlm.nih.gov/pubmed/28752643 http://onlinelibrary.wiley.com/doi/10.1111/acel.12638/abstract]]>
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder.
“Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the United States, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Lastly, we propose that a state of endocannabinoid deficiency could represent a stress-susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.” https://www.ncbi.nlm.nih.gov/pubmed/28745306 https://www.nature.com/npp/journal/vaop/naam/abs/npp2017162a.html]]>
The endocannabinoid system expression in the female reproductive tract is modulated by estrogen.
“The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen. Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry. In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues.” https://www.ncbi.nlm.nih.gov/pubmed/28743542 http://linkinghub.elsevier.com/retrieve/pii/S0960076017301887]]>
Endocannabinoids in arthritis: current views and perspective.
“Preclinical and clinical studies using cannabis-based therapy have been shown to provide both analgesia and anti-inflammatory effects, with an overall alleviation of clinical symptoms in animal models of arthritis, highlighting its promising therapeutic application for humans. Despite this, the development of cannabis-based therapeutics remains in its infancy, with further investigation into its efficacy and safety profile in patients still required. This synopsis reviews the various components of the endocannabinoid system in health and disease and their potential as therapeutic targets.” https://www.ncbi.nlm.nih.gov/pubmed/28736968 http://onlinelibrary.wiley.com/doi/10.1111/1756-185X.13146/abstract]]>
Neuroprotection by (endo)cannabinoids in glaucoma and retinal neurodegenerative diseases.
“Emerging neuroprotective strategies are being explored to preserve the retina from degeneration, that occurs in eye pathologies like glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Incidentally, neuroprotection of retina is a defending mechanism designed to prevent or delay neuronal cell death, and to maintain neural function following an initial insult, thus avoiding loss of vision. Numerous studies have investigated potential neuroprotective properties of plant-derived phytocannabinoids, as well as of their endogenous counterparts collectively termed endocannabinoids (eCBs), in several degenerative diseases of the retina. eCBs are a group of neuromodulators that, mainly by activating G protein-coupled type-1 and type-2 cannabinoid (CB1 and CB2) receptors, trigger multiple signal transduction cascades that modulate central and peripheral cell functions. A fine balance between biosynthetic and degrading enzymes that control the right concentration of eCBs has been shown to provide neuroprotection in traumatic, ischemic, inflammatory and neurotoxic damage of the brain. Since the existence of eCBs and their binding receptors was documented in the retina of numerous species (from fishes to primates), their involvement in the visual processing has been demonstrated, more recently with a focus on retinal neurodegeneration and neuroprotection. The aim of this review is to present a modern view of the endocannabinoid system, in order to discuss in a better perspective available data from preclinical studies on the use of eCBs as new neuroprotective agents, potentially useful to prevent glaucoma and retinal neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/28738764 http://www.eurekaselect.com/154386/article]]>