“Endocannabinoids (eCBs) are a family of lipid molecules that act as key regulators of synaptic transmission and plasticity. They are synthetized “on demand” following physiological and/or pathological stimuli. Once released from postsynaptic neurons, eCBs typically act as retrograde messengers to activate presynaptic type 1 cannabinoid receptors (CB1) and induce short- or long-term depression of neurotransmitter release. Besides this canonical mechanism of action, recent findings have revealed a number of less conventional mechanisms by which eCBs regulate neural activity and synaptic function, suggesting that eCB-mediated plasticity is mechanistically more diverse than anticipated. These mechanisms include non-retrograde signaling, signaling via astrocytes, participation in long-term potentiation, and the involvement of mitochondrial CB1. Focusing on paradigmatic brain areas, such as hippocampus, striatum, and neocortex, we review typical and novel signaling mechanisms, and discuss the functional implications in normal brain function and brain diseases. In summary, eCB signaling may lead to different forms of synaptic plasticity through activation of a plethora of mechanisms, which provide further complexity to the functional consequences of eCB signaling.” https://www.ncbi.nlm.nih.gov/pubmed/28625718 http://www.sciencedirect.com/science/article/pii/S0028390817302861]]>
Category Archives: Endocannabinoid System
Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years.
Endocannabinoid System in Neurodegenerative Disorders.
“Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid (EC) system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.” https://www.ncbi.nlm.nih.gov/pubmed/28608560 http://onlinelibrary.wiley.com/doi/10.1111/jnc.14098/abstract]]>
Cannabidiol upregulates melanogenesis through CB1 dependent pathway by activating p38 MAPK and p42/44 MAPK.
“Melanogenesis plays a critical role in the protection of skin against external stresses such as ultraviolet irradiation and oxidative stressors. This study was aimed to investigate the effects of cannabidiol on melanogenesis and its mechanisms of action in human epidermal melanocytes. We found that cannabidiol increased both melanin content and tryrosinase activity. The mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP) 1, and TRP2 were increased following cannabidiol treatment. Likewise, cannabidiol increased the protein levels of MITF, TRP 1, TRP 2, and tyrosinase. Mechanistically, we found that cannabidiol regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. In addition, the melanogenic effect of cannabidiol was found to be mediated by cannabinoid CB1 receptor, not by CB2receptor. Taken together, these findings indicate that cannabidiol-induced melanogenesis is cannabinoid CB1 receptor-dependent, and cannabidiol induces melanogenesis through increasing MITF gene expression which is mediated by activation of p38 MAPK and p42/44 MAPK. Our results suggest that cannabidiol might be useful as a protective agent against external stresses.” https://www.ncbi.nlm.nih.gov/pubmed/28601556 http://www.sciencedirect.com/science/article/pii/S0009279716304343]]>
Medicinal Uses of Marijuana and Cannabinoids
“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.” http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20
“Review Identifies 140 Controlled Clinical Trials Related to Cannabis” http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/
]]>Analysis of Natural Product Regulation of Cannabinoid Receptors in the treatment of Human Disease.
“The organized tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without the unideal side-effects. An example is Sativex that displayed promise in treating Huntington’s disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity, the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from market for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.” https://www.ncbi.nlm.nih.gov/pubmed/28583800 http://www.sciencedirect.com/science/article/pii/S0163725817301511]]>
Cannabinoids in attention-deficit/hyperactivity disorder: A randomised-controlled trial.
“Adults with ADHD describe self-medicating with cannabis, with some reporting a preference for cannabis over ADHD medications. A small number of psychiatrists in the US prescribe cannabis medication for ADHD, despite there being no evidence from randomised controlled studies. The EMA-C trial (Experimental Medicine in ADHD-Cannabinoids) was a pilot randomised placebo-controlled experimental study of a cannabinoid medication, Sativex Oromucosal Spray, in 30 adults with ADHD. Adults with ADHD may represent a subgroup of individuals who experience a reduction of symptoms and no cognitive impairments following cannabinoid use. While not definitive, this study provides preliminary evidence supporting the self-medication theory of cannabis use in ADHD and the need for further studies of the endocannabinoid system in ADHD.” https://www.ncbi.nlm.nih.gov/pubmed/28576350 http://www.europeanneuropsychopharmacology.com/article/S0924-977X(17)30237-7/fulltext]]>
GPR3 and GPR6, novel molecular targets for cannabidiol.
“GPR3 and GPR6 are members of a family of constitutively active, Gs protein-coupled receptors. Previously, it has been reported that GPR3 is involved in Alzheimer’s disease whereas GPR6 plays potential roles in Parkinson’s disease. GPR3 and GPR6 are considered orphan receptors because there are no confirmed endogenous agonists for them. However, GPR3 and GPR6 are phylogenetically related to the cannabinoid receptors. In this study, the activities of endocannabinoids and phytocannabinoids were tested on GPR3 and GPR6 using a β-arrestin2 recruitment assay. Among the variety of cannabinoids tested, cannabidiol (CBD), the major non-psychoactive component of marijuana, significantly reduced β-arrestin2 recruitment to both GPR3 and GPR6. In addition, the inhibitory effects of CBD on β-arrestin2 recruitment were concentration-dependent for both GPR3 and GPR6, with a higher potency for GPR6. These data show that CBD acts as an inverse agonist at both GPR3 and GPR6 receptors. These results demonstrate for the first time that both GPR3 and GPR6 are novel molecular targets for CBD. Our discovery that CBD acts as a novel inverse agonist on both GPR3 and GPR6 indicates that some of the potential therapeutic effects of CBD (e.g. treatment of Alzheimer’s disease and Parkinson’s disease) may be mediated through these important receptors.” https://www.ncbi.nlm.nih.gov/pubmed/28571738 http://www.sciencedirect.com/science/article/pii/S0006291X17310744]]>
The endocannabinoid system as a target for addiction treatment: Trials and tribulations.
“Addiction remains a major public health concern, and while pharmacotherapies can be effective, clinicians are limited by the paucity of existing interventions. Endocannabinoid signaling is involved in reward and addiction, which raises the possibility that drugs targeting this system could be used to treat substance use disorders. This review discusses findings from randomized controlled trials evaluating cannabinergic medications for addiction. Current evidence suggests that pharmacotherapies containing delta-9-tetrahydrocannabinol, such as dronabinol and nabiximols, are effective for cannabis withdrawal. Dronabinol may also reduce symptoms of opioid withdrawal. The cannabinoid receptor 1 (CB1) inverse agonist rimonabant showed promising effects for smoking cessation but also caused psychiatric side effects and currently lacks regulatory approval. Few trials have investigated cannabinergic medications for alcohol use disorder. Overall, the endocannabinoid system remains a promising target for addiction treatment. Development of novel medications such as fatty acid amide hydrolase inhibitors and neutral CB1 antagonists promises to extend the range of available interventions.” https://www.ncbi.nlm.nih.gov/pubmed/28564576 http://www.sciencedirect.com/science/article/pii/S0028390817302563]]>
Cannabinoid CB1/CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia.
“Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate. Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients.