Anti-Inflammatory and Osteoprotective Effects of Cannabinoid-2 Receptor Agonist Hu-308 in a Rat Model of Lipopolysaccharide-Induced Periodontitis.

“Anti-inflammatory and immunological properties of cannabinoids have been reported in several tissues.

Also, cannabinoid receptors type 2 (CB2) were reported to be expressed in osteoblast and osteoclast, suggesting a key role in bone metabolism.

The aim of the present study was to assess the effect of the treatment with the cannabinoid-2 receptor agonist HU-308 in the oral health of rats subjected to lipopolysaccharide (LPS)-induced periodontitis.

This study demonstrates the anti-inflammatory, osteoprotective and pro-homeostatic effects of HU-308 in oral tissues of rats with LPS-induced periodontitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26846967

Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model.

“Many inflammatory mediators, including various cytokines (e.g. interleukins and tumor necrosis factor [TNF]), inflammatory proteases, and histamine are released following mast cell activation.

Endogenous cannabinoids such as palmitoylethanolamide (PEA) and N-arachidonoylethanolamine (anandamide or AEA), were found in peripheral tissues and have been proposed to possess autacoid activity, implying that cannabinoids may downregulate mast cell activation and local inflammation.

Our results indicate that CB1R agonists down-regulate mast cell activation and may be used for relieving inflammatory symptoms mediated by mast cell activation, such as atopic dermatitis, psoriasis, and contact dermatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26848215

Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice.

“Accumulation of activated eosinophils in tissue is a hallmark of allergic inflammation.

The endocannabinoid 2-arachidonoylglycerol (2-AG) has been proposed to elicit eosinophil migration in a CB2 receptor/Gi/o -dependent manner.

Here we explored the direct contribution of specific CB2 receptor activation to human and mouse eosinophil effector function in vitro and in vivo.

Our data indicate that CB2 may directly contribute to the pathogenesis of eosinophil-driven diseases. Moreover, we provide new insights into the molecular mechanisms underlying the CB2 -mediated priming of eosinophils. Hence, antagonism of CB2 receptors may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophilic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26850094

JWH-133, a Selective Cannabinoid CB2 Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

“Endocannabinoid system plays an important role in the regulation of diverse physiological functions.

Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26842917

Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveal a Mechanism for Regulation of Tumor Progression.

“The G-protein-coupled chemokine receptor, CXCR4, generates signals that lead to cell migration, cell proliferation, and other survival mechanisms which result in the metastatic spread of primary tumor cells to distal organs.

Numerous studies have demonstrated that CXCR4 can form homodimers, or can heterodimerize with other GPCRs to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor.

Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells.

Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2, and ultimately, reduced cancer cell functions such as calcium mobilization and cellular chemotaxis.

Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells, as well as CXCR4-mediated migration of immune cells, it is therefore plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4.

Taken together, the data illustrates a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function, and perhaps, tumor progression.”

http://www.ncbi.nlm.nih.gov/pubmed/26841863

Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain.

“Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system.

Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function.

In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing.

The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far.

It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells.

The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26839718

The molecular mechanism and effect of cannabinoid-2 receptor agonist on the blood-spinal cord barrier permeability induced by ischemia-reperfusion injury.

“Previous studies have shown that modulation of the receptor-mediated endocannabinoid system during ischemia injury can induce potent neuroprotective effects.

However, little is known about whether cannabinoid-2 (CB2) receptor agonist would produce a protective effect on blood-spinal cord barrier (BSCB) during ischemia.

Taken together, all of these results suggested that JWH-015 might regulate the BSCB permeability and this effect could be related to paracellular and transcellular pathway.

And pharmacological CB2R ligands offer a new strategy for BSCB protection during ischemic injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26835555

Cannabinoids for pediatric epilepsy? Up in smoke or real science?

“Public interest in the use of “medical marijuana” for the treatment of childhood epilepsy has burgeoned in the last few years. This has occurred in parallel with a growing interest in “medical marijuana” in general. Physicians and pediatricians must balance their patients’ desire for immediate access to these products with the tenets of evidence-based medicine. This review discusses the biochemistry of cannabis products (the phytocannabinoids) setting this in the context of the endogenous endocannabinoid system. The differing and potentially modulating effects of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are reviewed. The evidence-base supporting or not the use of cannabis products for the treatment of neurological disease and specifically epilepsy is explored. The potential for adverse effects and particularly of neurotoxicity is addressed. Finally, public health and sociocultural implications are touched upon. Specific recommendations for interested physicians are provided including advocacy for patients and for a change in the “scheduling” of cannabis in order to better foster much-needed high-quality scientific research in this important area.”

http://www.ncbi.nlm.nih.gov/pubmed/26835389

Regulation of Stem Cells by the Endocannabinoid System

“The endocannabinoids, endogenous lipid mediators of related chemical structure to the prototype exogenous cannabinoid Δ9-THC found in marijuana, have emerged as important mediators that regulate central and peripheral neural functions as well as immune responses.

Endogenous and exogenous cannabinoid ligands bind to cannabinoid receptors: the predominant central cannabinoid receptor type 1 (CB1) and the peripheral cannabinoid receptor type 2 (CB2). CB1 and CB2 are members of the G-protein coupled receptor family.

Cannabinoids were shown to modulate the immune system and to affect the migration of blood cells, such as T-cells, monocytes and myeloid leukemia cells, through CB receptors.

Recent data indicate the potential role of cannabinoid ligands and receptors in the regulation of hematopoiesis and hematopoietic stem cell (HSC) migration and trafficking.

These studies may lead to clinical applications of cannabinoid-based compounds as new HSC-mobilizer agents for therapeutic intervention in bone marrow failure.”

http://link.springer.com/chapter/10.1007/978-94-007-2993-3_30

Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.

“Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS).

The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes.

Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved.

Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm).

In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation.

Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells.

Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery.

The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease.”

http://www.ncbi.nlm.nih.gov/pubmed/24076098