Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression?

Abstract

“With advances in basic and clinical neuroscience, many gaps have appeared in the traditional monoamine theory of depression that have led to reformulation of the hypotheses concerning the neurobiology of depression. The more recent hypotheses suggest that melancholic depression is characterized by central glucocorticoid resistance that results in hypercortisolemia, which in turn leads to down-regulation of neurotrophins and subsequent neurodegeneration. Examining the neurobiology of depression from this perspective suggests that the endocannabinoid system may play a role in the etiology of melancholic depression. Specifically, pharmacological and genetic blockade of the cannabinoid CB1 receptor induces a phenotypic state that is analogous to melancholic depression, including symptoms such as reduced food intake, heightened anxiety, increased arousal and wakefulness, deficits in extinction of aversive memories and supersensitivity to stress. These similarities between melancholic depression and an endocannabinoid deficiency become more interesting in light of recent findings that endocannabinoid activity is down-regulated by chronic stress and possibly increased by some antidepressant regimens. We propose that an endocannabinoid deficiency may underlie some of the symptoms of melancholic depression, and that enhancement of this system may ultimately be a novel form of pharmacotherapy for treatment-resistant depression.”

http://www.ncbi.nlm.nih.gov/pubmed/16148438

Role of the endocannabinoid system in depression and suicide.

Image result for trends in pharmacological sciences

“Depression is one of the most prevalent forms of neuropsychiatric disorder and is a major cause of suicide worldwide. The prefrontal cortex is a crucial brain region that is thought to be involved in the regulation of mood, aggression and/or impulsivity and decision making, which are altered in suicidality.

Evidence of the role of the endocannabinoid (EC) system in the neurobiology of neuropsychiatric disorders is beginning to emerge. The behavioral effects of ECs are believed to be mediated through the central cannabinoid CB1 receptor. Alterations in the levels of ECs, and in the density and coupling efficacy of CB1 receptors, have been reported in the prefrontal cortex of depressed and alcoholic suicide victims.

These findings support our hypothesis that altered EC function contributes to the pathophysiological aspects of suicidal behavior. Here, we provide a brief overview of the role of the EC system in alcoholism, depression and suicide, and discuss possible therapeutic interventions and directions for future research.”

https://www.ncbi.nlm.nih.gov/pubmed/16919786

http://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(06)00186-6

 

The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs.

“Observational studies in humans suggest that exposure to marijuana and other cannabis-derived drugs produces a wide range of subjective effects on mood tone and emotionality. These observations have their counterpart in animal studies, showing that cannabinoid agonists strongly affect emotional reactivity in directions that vary depending on dose and context. Based on these evidence, the activation of central CB(1) receptor has emerged as potential target for the development of antianxiety and antidepressant therapies…”

http://www.ncbi.nlm.nih.gov/pubmed/19607961

 

[Endogenous cannabinoid system and depression].

Abstract

“Endogenous cannabinoid system (ECS) is highly conserved during evolution of the body’s endocrine network. It is a regulator of mood, cognitive, autonomic nervous system and movement control system. ECS dysfunction can promote the progress and maintain of depression, phobia, and extreme anxiety. The antidepressant drugs to enhance the activity of ECS may represent a new direction, but rarely reported research in this regard.”

http://www.ncbi.nlm.nih.gov/pubmed/23189618

Role of cannabinoids in the regulation of bone remodeling

Abstract

“The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodeling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors, and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodeling in health and disease.”

http://www.ncbi.nlm.nih.gov/pubmed/23181053

Increasing 2-arachidonoyl glycerol signaling in the periphery attenuates mechanical hyperalgesia in a model of bone cancer pain

“Metastatic and primary bone cancers are usually accompanied by severe pain that is difficult to manage. In light of the adverse side effects of opioids, manipulation of the endocannabinoid system may provide an effective alternative for the treatment of cancer pain…

These data extend our previous findings with anandamide in the same model and suggest that the peripheral endocannabinoid system is a promising target for the management of cancer pain.

Taken together, the data demonstrate that peripheral 2-AG signaling may be a significant target to exploit for the management of cancer pain. In contrast to AEA, which inhibits nociception through CB1 receptors… Dual pharmacological modulation of peripheral AEA and 2-AG signaling that directly and indirectly affects DRG neurons may be a novel approach to reducing cancer pain without the side effects…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104059/

 

Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain.

Image result for journal of pain and symptom management impact factor

“This study compared the efficacy of a tetrahydrocannabinol:cannabidiol (THC:CBD) extract, a nonopioid analgesic endocannabinoid system modulator, and a THC extract, with placebo, in relieving pain in patients with advanced cancer. This study shows that THC:CBD extract is efficacious for relief of pain in patients with advanced cancer pain not fully relieved by strong opioids.”  http://www.ncbi.nlm.nih.gov/pubmed/19896326

“In conclusion, THC:CBD extract, a nonopioid analgesic, endocannabinoid system modulator, has been shown to be a useful adjunctive treatment for relief of pain in patients with advanced cancer who experience inadequate analgesia despite chronic opioid therapy. The reductions in pain scores were neither because of a change in opioid background medications nor because of an increase in use of breakthrough medication. Therefore, we can conclude that the observed reduction in pain scores is attributable to the positive analgesic effects of THC:CBD extract.” http://www.jpsmjournal.com/article/S0885-3924(09)00787-8/fulltext

Boosting Natural Marijuana-Like Brain Chemicals Treats Fragile X Syndrome Symptoms

“ScienceDaily (Sep. 25, 2012) — American and European scientists have found that increasing natural marijuana-like chemicals in the brain can help correct behavioral issues related to fragile X syndrome, the most common known genetic cause of autism.

The work indicates potential treatments for anxiety and cognitive defects in people with this condition. Results appear online in Nature Communications.

Daniele Piomelli of UC Irvine and Olivier Manzoni of INSERM, the French national research agency, led the study, which identified compounds that inhibit enzymes blocking endocannabinoid transmitters called 2-AG in the striatum and cortex regions of the brain.

These transmitters allow for the efficient transport of electrical signals at synapses, structures through which information passes between neurons. In fragile X syndrome, regional synapse communication is severely limited, giving rise to certain cognitive and behavioral problems.

Fragile X syndrome is caused by a mutation of the FMR1 gene on the X chromosome. People born with it are mentally disabled; generally experience crawling, walking and language delays; tend to avoid eye contact; may be hyperactive or impulsive; and have such notable physical characteristics as an elongated face, flat feet and large ears.

The researchers stress that their findings, while promising, do not point to a cure for the condition.

“What we hope is to one day increase the ability of people with fragile X syndrome to socialize and engage in normal cognitive functions,” said Piomelli, a UCI professor of anatomy & neurobiology and the Louise Turner Arnold Chair in the Neurosciences.

The study involved mice genetically altered with FMR1 mutations that exhibited symptoms of fragile X syndrome. Treated with novel compounds that correct 2-AG protein signaling in brain cells, these mice showed dramatic behavioral improvements in maze tests measuring anxiety and open-space acceptance.

While other work has focused on pharmacological treatments for behavioral issues associated with fragile X syndrome, Piomelli noted that this is the first to identify the role endocannabinoids play in the neurobiology of the condition.

About endocannabinoids

Endocannabinoid compounds are created naturally in the body and share a similar chemical structure with THC, the primary psychoactive component of the marijuana plant, Cannabis. Endocannabinoids are distinctive because they link with protein molecule receptors — called cannabinoid receptors — on the surface of cells. For instance, when a person smokes marijuana, the cannabinoid THC activates these receptors. Because the body’s natural cannabinoids control a variety of factors — such as pain, mood and appetite — they’re attractive targets for drug discovery and development. Piomelli is one of the world’s leading endocannabinoid researchers. His groundbreaking work is showing that this system can be exploited by new treatments to combat anxiety, pain, depression and obesity.”

http://www.sciencedaily.com/releases/2012/09/120925121349.htm

Enhanced endocannabinoid signaling elevates neuronal excitability in Fragile X syndrome

 “Fragile X syndrome (FXS) results from deficiency of fragile X mental retardation protein (FMRP). FXS is the most common heritable form of mental retardation, and is associated with the occurrence of seizures. Factors responsible for initiating FXS-related hyperexcitability are poorly understood. Many protein-synthesis dependent functions of group I metabotropic glutamate receptors (Gp1 mGluRs) are exaggerated in FXS. Gp1 mGluR activation can mobilize endocannabinoids (eCBs) in the hippocampus and thereby increase excitability, but whether FMRP affects eCBs is unknown. We studied Fmr1 knockout (KO) mice lacking FMRP to test the hypothesis that eCB function is altered in FXS. Whole-cell, evoked inhibitory postsynaptic currents (eIPSCs), and field potentials were recorded in the CA1 region of acute hippocampal slices. Three eCB-mediated responses were examined: depolarization-induced suppression of inhibition (DSI), mGluR-initiated eCB short-term depression of eIPSCs (eCB-iSTD), and eCB-dependent inhibitory long-term depression (eCB-iLTD). Low concentrations of a Gp1 mGluR agonist produced larger eCB-mediated responses in Fmr1 KO mice than in WT mice, without affecting DSI. Western blots revealed that levels of mGluR1, mGluR5, or cannabinoid receptor (CB1R), were unchanged in Fmr1 KO animals, suggesting that the coupling between mGluR activation and eCB mobilization was enhanced by FMRP deletion. The increased susceptibility of Fmr1 KOslices to eCB-iLTD was physiologically relevant, since long-term potentiation of epsp-spike (E-S) coupling induced by the mGluR agonist was markedly larger in Fmr1 KO mice than in WT animals. Alterations in eCB signaling could contribute to the cognitive dysfunction associated with FXS…

The endocannabinoid system could represent another target for intervention in the treatment of FXS.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906112/

Abnormal mGlu 5 Receptor/Endocannabinoid Coupling in Mice Lacking FMRP and BC1 RNA

“Transcriptional silencing of the gene encoding the fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS)…

Our data indicate for the first time that mGlu5R-driven endocannabinoid signaling in the striatum is under the control of both FMRP and BC1 RNA. The abnormal mGlu5R/2-AG coupling found in FMRP-KO mice emphasizes the involvement of mGlu5Rs in the synaptic defects of FXSand identifies the modulation of the endocannabinoid system as a novel target for the treatment of this severe neuropsychiatric disorder.

In conclusion, this is the first study addressing endocannabinoid system in a model of FXS. Our results show that dysfunctional mGlu5R signaling leads to abnormal 2-AG metabolism and physiological activity, and indicate that inhibition of 2-AG synthesis or activity at CB1Rs might be a useful treatment option in FXS patients. In this respect, recent investigations suggest that this modulation could be achieved not only by direct pharmacological blockade of CB1Rs, but also indirectly, for example through the inhibition of anandamide degradation or the stimulation of transient receptor potential vanilloid 1 (TRPV1) channels. These two components of the endocannabinoid system, in fact, have been shown to selectively interact with mGlu5R/2-AG coupling in striatal neurons, and might interfere with the synaptic alterations seen after FMRP ablation with less side effects than those of widespread pharmacological inhibition of CB1Rs, which control not only GABA but also glutamate synapses.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055456/