Supercritical Extract of Cannabis sativa Inhibits Lung Metastasis in Colorectal Cancer Cells by Increasing AMPK and MAPKs-Mediated Apoptosis and Cell Cycle Arrest

nutrients-logo

“Colorectal cancer (CRC) is one of the diseases with the highest rates of prevalence and mortality despite therapeutic methods in the world. In particular, there are not enough methods to treat metastasis of CRC cells to distant organs. Cannabis sativa Linne (C. sativa) is a popular medicinal plant used by humans to treat many diseases. Recently, extracts of C. sativa have shown diverse pharmacological effects as a result of choosing different extraction methods. In this study, we performed experiments to confirm the inhibitory effect and related mechanisms of supercritical extract of C. sativa on metastatic CRC cells. The effect of SEC on the viability of CRC cell lines, CT26 and HCT116, was determined using CCK reagent. Flow cytometry was performed to confirm whether SEC can promote cell cycle arrest and apoptosis. Additionally, SEC reduced proliferation of CT26 and HCT116 cells without causing toxicity to normal colon cell line CCD-18Co cells. SEC treatment reduced colony formation in both CRC cell lines, promoted G0/G1 phase arrest and apoptosis in CT26 and HCT116 cells through AMPK activation and MAPKs such as ERK, JNK, and p38 inactivation. Moreover, oral administration of SEC decreased pulmonary metastasis of CT26 cells. Our research demonstrates the inhibitory effect of SEC on CRC cell proliferation and metastasis. Thus, SEC might have therapeutic potential for CRC treatment.”

https://pubmed.ncbi.nlm.nih.gov/36364815/

https://www.mdpi.com/2072-6643/14/21/4548/htm

Phytocannabinoid Compositions from Cannabis Act Synergistically with PARP1 Inhibitor against Ovarian Cancer Cells In Vitro and Affect the Wnt Signaling Pathway

molecules-logo

“Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9-tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial-mesenchymal transition (EMT) phenotype and β-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient’s cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/36364346/

“We suggest that cannabis might be regarded as a complementary and effective anti-cancer treatment for OC. Given the favorable safety profile of phytocannabinoids, compared to standard pharmacotherapies, we propose that clinical trials with cannabis-based products are desperately needed for OC patients.”

https://www.mdpi.com/1420-3049/27/21/7523/htm

Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil

polymers-logo

“There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.”

https://pubmed.ncbi.nlm.nih.gov/36365500/

“In summary, herein we show that the new biomaterial loaded with Cannabis sativa oil and printed with 3D technology could be a promising alternative to conventional treatments for wound healing.”

https://www.mdpi.com/2073-4360/14/21/4506/htm

Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery

ijms-logo

“Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.”

https://pubmed.ncbi.nlm.nih.gov/36362014/

“Specific targeting of the endocannabinoid system seems to be a good starting point towards developing a sophisticated cannabinoid drug design void of undesirable side effects but the future of commercialized ECS products calls for exploration from a broader perspective. Further study into the complexity of the expanded endocannabinoidome is required to consider the dynamics and interconnections it has with other regulatory systems. As the ECS is interconnected with other lipid-based signaling systems and cannabinomimetic compounds have been identified in a variety of foods, research into the link between diet and the synthesis and release of endocannabinoids and related mediators will do well to guide a better understanding of the endocannabinoidome and epigenetics of the ECS.”

https://www.mdpi.com/1422-0067/23/21/13223/htm

The Characteristics of Clinical Trials on Cannabis and Cannabinoids: A Review of Trials for Therapeutic or Drug Development Purposes

SpringerLink

“Introduction: Patients and healthcare practitioners are increasingly interested in using cannabis and cannabinoids to address unmet clinical needs. Although we have clinical evidence on the medical use of cannabinoids, a significant portion of the data is not based on randomized clinical trials, which are considered the gold standard in clinical research. We have reviewed the registered clinical trials on cannabis and cannabinoids for therapeutic or drug development purposes to underline the past and current attempts to generate robust clinical evidence and identify existing knowledge gaps.

Methods: We reviewed four clinical trial registries (International Clinical Trials Registry Program [ICTRP], ClinicalTrials.gov, European Clinical Trial Registry [EUCTR], Australian New Zealand Clinical Trial Registry [ANZCTR]) to identify clinical trials on cannabinoids (phyto- or synthetic) or cannabis-based medications between January 1, 2000, and December 31, 2021. All interventional clinical trials on cannabinoids and other compounds interacting with the endocannabinoid system, regardless of the investigated medical condition, assessed health outcomes, or choice of comparator, were included, provided they had a therapeutic or drug development purpose. Data on the primary sponsor, type of sponsor, date of registration, recruitment status, number of participants, study design, the phase of the study, country, medical conditions, investigated cannabinoids, and the route of administration were extracted. The therapeutic area and class of cannabinoids were identified based on the details of each trial.

Results: We included 834 out of 2966 reviewed clinical trials. The number of registered clinical trials has constantly increased from 30 in 2013 to 103 in 2021. More than 40% of registered clinical trials in 2021 were phase II and phase III clinical trials. The mean number of trial enrollments for completed, ongoing, and terminated studies were 128, 156, and 542, respectively. Clinical research on Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and the oral routes of administration dominate the field. Approximately two-thirds of clinical trials were conducted in five therapeutic areas (i.e., ‘Chronic pain,’ ‘Mental, behavioral or neurodevelopmental disorders,’ ‘Nervous system diseases,’ ‘Endocrine, nutritional or metabolic diseases,’ and ‘Neoplasms’). Pharmaceutical companies sponsored 39% of all clinical trials. However, trial sponsorships vary noticeably in different jurisdictions, likely due to, in part, different regulatory frameworks.

Conclusion: Our review highlights the diversification of clinical trials on cannabinoid-based medications in the past 21 years. This review underlines the increased interest in conducting clinical studies on new cannabinoid administration methods such as topical applications and on the investigation of emerging phyto- and synthetic cannabinoids. Moreover, more clinical trials have been designed to explore the potential therapeutic benefits of cannabinoids in areas such as mental, behavioral, or neurodevelopmental disorders and skin diseases. There is a need for granular analyses of clinical trials on more commonly studied therapeutic areas such as chronic pain, nervous system diseases, and mental and behavioral disorders to generate more actionable information and insight for all stakeholders.”

https://pubmed.ncbi.nlm.nih.gov/36357543/

https://link.springer.com/article/10.1007/s40290-022-00447-7

Photodynamic Therapy Efficacy of Novel Zinc Phthalocyanine Tetra Sodium 2-Mercaptoacetate Combined with Cannabidiol on Metastatic Melanoma

pharmaceutics-logo

“This work reports for the first time on the synthesis, characterization, and photodynamic therapy effect of a novel water-soluble zinc (II) 2(3), 9(10), 16(17), 23(24)-tetrakis-(sodium 2-mercaptoacetate) phthalocyanine (ZnPcTS41), on metastatic melanoma cells (A375) combined with cannabidiol (CBD). The ZnPcTS41 structure was confirmed using FTIR, NMR, MS, and elemental analysis while the electronic absorption spectrum was studied using UV-VIS. The study reports further on the dose-dependent effects of ZnPcTS41 (1-8 µM) and CBD alone (0.3-1.1 µM) at 636 nm with 10 J/cm2 on cellular morphology and viability. The IC50 concentrations of ZnPcTS41 and CBD were found to be 5.3 µM and 0.63 µM, respectively. The cytotoxicity effects of the ZnPcTS41 enhanced with CBD on A375 cells were assessed using MTT cell viability assay, ATP cellular proliferation and inverted light microscopy. Cell death induction was also determined via Annexin V-FITC-PI. The combination of CBD- and ZnPcTS41-mediated PDT resulted in a significant reduction in cell viability (15%***) and an increase in the late apoptotic cell population (25%*). These findings suggest that enhancing PDT with anticancer agents such as CBD could possibly obliterate cancer cells and inhibit tumor recurrence.”

https://pubmed.ncbi.nlm.nih.gov/36365236/

https://www.mdpi.com/1999-4923/14/11/2418/htm

Role of Cannabidiol for Improvement of the Quality of Life in Cancer Patients: Potential and Challenges

ijms-logo

“There is currently a growing interest in the use of cannabidiol (CBD) to alleviate the symptoms caused by cancer, including pain, sleep disruption, and anxiety. CBD is often self-administered as an over-the-counter supplement, and patients have reported benefits from its use. However, despite the progress made, the mechanisms underlying CBD’s anti-cancer activity remain divergent and unclear. Herein, we provide a comprehensive review of molecular mechanisms to determine convergent anti-cancer actions of CBD from pre-clinical and clinical studies. In vitro studies have begun to elucidate the molecular targets of CBD and provide evidence of CBD’s anti-tumor properties in cell and mouse models of cancer. Furthermore, several clinical trials have been completed testing CBD’s efficacy in treating cancer-related pain. However, most use a mixture of CBD and the psychoactive, tetrahydrocannabinol (THC), and/or use variable dosing that is not consistent between individual patients. Despite these limitations, significant reductions in pain and opioid use have been reported in cancer patients using CBD or CBD+THC. Additionally, significant improvements in quality-of-life measures and patients’ overall satisfaction with their treatment have been reported. Thus, there is growing evidence suggesting that CBD might be useful to improve the overall quality of life of cancer patients by both alleviating cancer symptoms and by synergizing with cancer therapies to improve their efficacy. However, many questions remain unanswered regarding the use of CBD in cancer treatment, including the optimal dose, effective combinations with other drugs, and which biomarkers/clinical presentation of symptoms may guide its use.”

https://pubmed.ncbi.nlm.nih.gov/36361743/

“CBD has great potential to improve the lives of cancer patients both by alleviating the symptoms of pain, sleep disturbance, and anxiety, but also by synergistic activity with anti-cancer treatments to reverse or eliminate the growth of tumors causing these symptoms. Pre-clinical evidence in cell and mouse models supports the use of CBD as an anti-cancer therapy; however, clinical knowledge is currently lacking in this area. The effectiveness of CBD has been demonstrated in models of lung, breast, and colon cancer, as well as leukemia and glioblastoma. CBD has been shown to be toxic to cancer cells in vitro, and it is also generally well tolerated in the clinic.”

https://www.mdpi.com/1422-0067/23/21/12956/htm

Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke

ijms-logo

“Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to the modulation of neuroinflammation, including glial activation. To investigate the effects of CBD on glial cells after focal ischemia in vivo, we performed time-lapse imaging of microglia and astroglial Ca2+ signaling in the somatosensory cortex in the subacute phase of stroke by in vivo two-photon laser-scanning microscopy using transgenic mice with microglial EGFP expression and astrocyte-specific expression of the genetically encoded Ca2+ sensor GCaMP3. CBD (10 mg/kg, intraperitoneally) prevented ischemia-induced neurological impairment, reducing the neurological deficit score from 2.0 ± 1.2 to 0.8 ± 0.8, and protected against neurodegeneration, as shown by the reduction (more than 70%) in Fluoro-Jade C staining (18.8 ± 7.5 to 5.3 ± 0.3). CBD reduced ischemia-induced microglial activation assessed by changes in soma area and total branch length, and exerted a balancing effect on astroglial Ca2+ signals. Our findings indicate that the neuroprotective effects of CBD may occur in the subacute phase of ischemia, and reinforce its strong anti-inflammatory property. Nevertheless, its mechanism of action on glial cells still requires further studies.”

https://pubmed.ncbi.nlm.nih.gov/36361675/

“Overall, the present findings suggest that the functional and structural protective effects of cannabidiol (CBD) are closely associated with anti-inflammatory activity in the subacute phase of ischemia. Even though the mechanisms of action of CBD are not yet fully understood, our data have heuristic value to inspire further studies investigating the effect of CBD using different treatment schedules, for example, when administered for longer periods or later after the onset of ischemia. In conclusion, our data highlight the potential of CBD as a neuroprotective compound in stroke.”

https://www.mdpi.com/1422-0067/23/21/12886/htm

Application of Oil-in-Water Cannabidiol Emulsion for the Treatment of Rheumatoid Arthritis

View details for Cannabis and Cannabinoid Research cover image

“Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease with unknown cause. It mainly affects joints and, without proper treatment, negatively impacts their movement, causes painful deformities, and reduces the patients’ quality of life. Current treatment options consist of various types of disease-modifying antirheumatic drugs (DMARDs), however 20-30% of patients are partially resistant to them. Therefore, development of new drugs is necessary. Possible option are compounds exhibiting their action via endocannabinoid system, which plays an important role in pain and inflammation modulation. One such compound – cannabidiol (CBD) has already been shown to attenuate synovitis in animal model of RA in in vivo studies. However, it has low bioavailability due to its low water solubility and lipophilicity. This issue can be addressed by preparation of a lipid containing formulation targeting lymphatic system, another route of absorption in the body. 

Materials and Methods: CBD-containing emulsion was prepared by high-shear homogenization and its droplet size distribution was analysed by optical microscopy. The relative oral bioavailability compared to oil solution as well as total availability of CBD were assessed in a cross-over study in rats and absorption of CBD via lymphatic system was observed. The effect of CBD on the animal model of RA was determined. 

Results: Compared to oil solution, the emulsion exhibited higher absolute oral bioavailability. Significant lymphatic transport of CBD was observed in all formulations and the concentrations in lymph were calculated. The therapeutic effect of CBD on RA was confirmed as an improvement in clinical symptoms as well as morphological signs of disease activity were observed during the study. 

Conclusion: In this work, we prepared a simple stable emulsion formulation, determined the pharmacokinetic parameters of CBD and calculated its absolute bioavailability in rats. Moreover, we successfully tested the pharmaceutical application of such a formulation and demonstrated the positive effect of CBD in an animal model of RA.”

https://pubmed.ncbi.nlm.nih.gov/36342775/

https://www.liebertpub.com/doi/10.1089/can.2022.0176

Chronic Pain and Cannabidiol in Animal Models: Behavioral Pharmacology and Future Perspectives

View details for Cannabis and Cannabinoid Research cover image

“The incidence of chronic pain is around 8% in the general population, and its impact on quality of life, mood, and sleep exceeds the burden of its causal pathology. Chronic pain is a complex and multifaceted problem with few effective and safe treatment options. It can be associated with neurological diseases, peripheral injuries or central trauma, or some maladaptation to traumatic or emotional events. In this perspective, animal models are used to assess the manifestations of neuropathy, such as allodynia and hyperalgesia, through nociceptive tests, such as von Frey, Hargreaves, hot plate, tail-flick, Randall & Selitto, and others. Cannabidiol (CBD) has been considered a promising strategy for treating chronic pain and diseases that have pain as a consequence of neuropathy. However, despite the growing body of evidence linking the efficacy of CBD on pain management in clinical and basic research, there is a lack of reviews focusing on chronic pain assessments, especially when considering pre-clinical studies, which assess chronic pain as a disease by itself or as a consequence of trauma or peripheral or central disease. Therefore, this review focused only on studies that fit our inclusion criteria: (1) used treatment with CBD extract; (2) used tests to assess mechanical or thermal nociception in at least one of the following most commonly used tests (von Frey, hot plate, acetone, Hargreaves, tail-flick, Randall & Selitto, and others); and (3) studies that assessed pain sensitivity in chronic pain induction models. The current literature points out that CBD is a well-tolerated and safe natural compound that exerts analgesic effects, decreasing hyperalgesia, and mechanical/thermal allodynia in several animal models of pain and patients. In addition, CBD presents several molecular and cellular mechanisms of action involved in its positive effects on chronic pain. In conclusion, using CBD seems to be a promising strategy to overcome the lack of efficacy of conventional treatment for chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/36355044/

https://www.liebertpub.com/doi/10.1089/can.2022.0096