Tag Archives: agonists
Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents.
“Cannabinoids (the active components of Cannabis sativa) and their derivatives have received renewed interest in recent years due to their diverse pharmacological activities. In particular, cannabinoids offer potential applications as anti-tumour drugs, based on the ability of some members of this class of compounds to limit cell proliferation and to induce tumour-selective cell death. Although synthetic cannabinoids may have pro-tumour effects in vivo due to their immunosuppressive properties, predominantly inhibitory effects on tumour growth and migration, angiogenesis, metastasis, and also inflammation have been described. Emerging evidence suggests that agonists of cannabinoid receptors expressed by tumour cells may offer a novel strategy to treat cancer. In this chapter we review the more recent results generating interest in the field of cannabinoids and cancer, and provide novel suggestions for the development, exploration and use of cannabinoid agonists for cancer therapy, not only as palliative but also as curative drugs.” https://www.ncbi.nlm.nih.gov/pubmed/19285265
“Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents” http://www.bprcem.com/article/S1521-690X(09)00005-0/abstract
Therapeutic potential of cannabinoid receptor ligands: current status.
Abstract
“There are at least two types of cannabinoid receptors, CB1 also named CNR1 and CB2 also named CNR2, both coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2-AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. CB1/CB2 agonists are already used clinically as antiemetic or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis, spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilatation that accompanies advanced cirrhosis, and cancer.”
[The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans].
Abstract
“The endocannabinoid system has been recently recognized as an important modulatory system in the function of brain, endocrine, and immune tissues. It appears to play a very important regulatory role in the secretion of hormones related to reproductive functions and response to stress. The important elements of this system are: endocannabinoid receptors (types CB1 and CB2), their endogenous ligands (N-arachidonoylethanolamide, 2-arachidonoyl glycerol), enzymes involved in their synthesis and degradation, as well as cannabinoid antagonists. In humans this system also controls energy homeostasis and mainly influences the function of the food intake centers of the central nervous system and gastrointestinal tract activity. The endocannabinoid system regulates not only the central and peripheral mechanisms of food intake, but also lipids synthesis and turnover in the liver and adipose tissue as well as glucose metabolism in muscle cells. Rimonabant, a new and selective central and peripheral cannabinoid-1 receptor (CB1) blocker, has been shown to reduce body weight and improve cardiovascular risk factor (metabolic syndrome) in obese patients by increasing HDL-cholesterol and adiponectin blood levels as well as decreasing LDL-cholesterol, leptin, and C-reactive protein (a proinflammatory marker) concentrations. It is therefore possible to speculate about a future clinical use of CB1 antagonists, as a means of improving gonadotrophin pulsatility and fertilization capacity as well as the prevention of cardiovasculary disease and type 2 diabetes mellitus. Drugs acting as agonists of CB1 receptors (Dronabinol, Dexanabinol) are currently proposed for evaluation as drugs to treat neurodegenerative disorders (Alzheimer’s and Parkinson’s diseases), epilepsy, anxiety, and stroke.”
The endocannabinoid system: physiology and pharmacology.
Abstract
“The endogenous cannabinoid system is an ubiquitous lipid signalling system that appeared early in evolution and which has important regulatory functions throughout the body in all vertebrates. The main endocannabinoids (endogenous cannabis-like substances) are small molecules derived from arachidonic acid, anandamide (arachidonoylethanolamide) and 2-arachidonoylglycerol. They bind to a family of G-protein-coupled receptors, of which the cannabinoid CB(1) receptor is densely distributed in areas of the brain related to motor control, cognition, emotional responses, motivated behaviour and homeostasis. Outside the brain, the endocannabinoid system is one of the crucial modulators of the autonomic nervous system, the immune system and microcirculation. Endocannabinoids are released upon demand from lipid precursors in a receptor-dependent manner and serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of postsynaptic transmission, interacting with other neurotransmitters, including dopamine. Endocannabinoids are transported into cells by a specific uptake system and degraded by two well-characterized enzymes, the fatty acid amide hydrolase and the monoacylglycerol lipase. Recent pharmacological advances have led to the synthesis of cannabinoid receptor agonists and antagonists, anandamide uptake blockers and potent, selective inhibitors of endocannabinoid degradation. These new tools have enabled the study of the physiological roles played by the endocannabinoids and have opened up new strategies in the treatment of pain, obesity, neurological diseases including multiple sclerosis, emotional disturbances such as anxiety and other psychiatric disorders including drug addiction. Recent advances have specifically linked the endogenous cannabinoid system to alcoholism, and cannabinoid receptor antagonism now emerges as a promising therapeutic alternative for alcohol dependence and relapse.”
CONCLUSION
“Since the discovery of anandamide, the increasing information on the physiological roles played by the endogenous cannabinoid system and its contribution to pathology have led to this signalling system becoming more important in neurobiology. The intense pharmacological research based on this information has yielded, in a very short time, potent, selective drugs targeting the endogenous cannabinoid system that have opened up new avenues for the understanding and treatment of major diseases including cancer, pain, neurodegeneration, anxiety and addiction. This is a very promising starting point for a new age that takes over from the ancient use of Cannabis as a medicine. Now is the time for clinical trials aimed at evaluating the efficacy of cannabinoid drugs in disorders lacking effective therapeutic approaches, such as alcoholism.”
Anandamide inhibits adhesion and migration of breast cancer cells.
“The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast metastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2′-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.”
Disease modification of breast cancer-induced bone remodeling by cannabinoid 2 receptor agonists.
“Most commonly originating from breast malignancies, metastatic bone cancer causes bone destruction and severe pain. Although novel chemotherapeutic agents have increased life expectancy, patients are experiencing higher incidences of fracture, pain, and drug-induced side effects; furthermore, recent findings suggest that patients are severely under-treated for their cancer pain. Strong analgesics, namely opiates, are first-line therapy in alleviating cancer-related pain despite the severe side effects, including enhanced bone destruction with sustained administration.Bone resorption is primarily treated with bisphosphonates, which are associated with highly undesirable side-effects including nephrotoxicity and osteonecrosis of the jaw.In contrast, cannabinoid CB(2) receptor-specific agonists have been shown to reduce bone loss and stimulate bone formation in a model of osteoporosis.CB(2) agonists produce analgesia in both inflammatory and neuropathic pain models. Notably, mixed CB(1) /CB(2) agonists also demonstrate a reduction in ErbB2-driven breast cancer progression. Here we demonstrate for the first time that CB(2) agonists reduce breast cancer-induced bone pain, bone loss and breast cancer proliferation via cytokine/chemokine suppression.Studies utilized the spontaneously-occurring murine mammary cell line (66.1) implanted into the femur intramedullary space; measurements of spontaneous pain, bone loss and cancer proliferation were made. The systemic administration of a CB(2) agonist, JWH015, for seven days significantly attenuated bone remodeling, assuaged spontaneous pain and decreased primary tumor burden. CB(2) -mediated effects in vivo were reversed by concurrent treatment with a CB(2) antagonist/inverse agonist but not with a CB(1) antagonist/inverse agonist. In vitro, JWH015 reduced cancer cell proliferation and inflammatory mediators that have been shown to promote pain, bone loss and proliferation.Taken together, these results suggest CB(2) agonists as a novel treatment for breast cancer-induced bone pain, where disease modifications include a reduction in bone loss, suppression of cancer growth, attenuation of severe bone-pain and increased survival without the major side effects of current therapeutic options.”
Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma
“Because cannabinoid receptor agonists are capable of reducing proliferation and inducing apoptosis (cell death) in diverse cancer cells such as glioma, breast cancer, and melanoma, we evaluated whether CB1 is a potential drug target in rhabdomyosarcoma.
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children…
Our study shows that treatment with the cannabinoid receptor agonists HU210 (cloned THC from Hebrew University) and Delta(9)-tetrahydrocannabinol (THC from cannabis) lowers the viability of translocation-positive rhabdomyosarcoma cells through the induction of apoptosis…
These results support the notion that cannabinoid receptor agonists could represent a novel targeted approach for treatment of translocation-positive rhabdomyosarcoma.”
Full text: http://mct.aacrjournals.org/content/8/7/1838.long
