Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats.

 Image result for Indian J Med Res.

“Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects.

Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous system could be selectively activated for relief of pain.

This study was undertaken to measure the antinociceptive effect of type 1 cannabinoid receptor (CB1r) agonist arachidonylcyclopropylamide (ACPA) in a rat model of inflammatory pain after intrawound administration and the effects were compared with lignocaine.

Lignocaine attenuated evoked pain behaviour whereas ACPA decreased guarding score. This difference was likely due to blockade of sodium ion channels and the activation of peripheral CB1r, respectively. Central side effects were absent after ACPA treatment. Further studies need to be done to assess the effect of ACPA treatment in clinical conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/28361827

Activation of CB1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries.

“Recent evidence suggests that endocannabinoids acting via cannabinoid CB1 receptors may modulate vascular responses of various vasoconstrictors in the rodent systemic vasculature. The aim of the study was to investigate whether endocannabinoids modulate the contractile responses evoked by a thromboxane A2 analog (U46619), angiotensin II (Ang II), serotonin (5-HT) and phenylephrine which stimulate distinct Gq/11-protein coupled receptors (TP, AT1, 5-HT2 and α1-adrenergic) in isolated endothelium-intact human (hPAs) and rat pulmonary arteries (rPAs). The present study shows the protective interaction between the endocannabinoid system and vasoconstriction to U46619 and Ang II in the human and rat pulmonary circulation. U46619 and Ang II may stimulate rapid endothelial release of endocannabinoids (mainly 2-arachidonoylglycerol), leading to CB1 receptor-dependent and/or -independent vasorelaxation, which in the negative feedback mechanism reduces later agonists-induced vasoconstriction.” https://www.ncbi.nlm.nih.gov/pubmed/28356298 http://ajpregu.physiology.org/content/early/2017/03/27/ajpregu.00324.2016]]>

Loss of Cannabinoid CB 1 Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility.

“Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabinoid CB 1 receptor is strictly required for appropriate pyramidal neuron migration in the developing cortex. Acute silencing of the CB 1 receptor alters neuronal morphology and impairs radial migration. Consequently, CB 1 siRNA-electroporated mice display cortical malformations mimicking subcortical band heterotopias and increased seizure susceptibility in adulthood. Importantly, rescuing the CB 1 deficiency-induced radial migration arrest by knockdown of the GTPase protein RhoA restored the hyperexcitable neuronal network and seizure susceptibility. Our findings show that CB 1 receptor/RhoA signaling regulates pyramidal neuron migration, and that deficient CB 1 receptor signaling may contribute to cortical development malformations leading to refractory epilepsy independently of its canonical neuromodulatory role in the adult brain.” https://www.ncbi.nlm.nih.gov/pubmed/28334226]]>

Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors.

 Image result for Am J Transl Res “The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies.” https://www.ncbi.nlm.nih.gov/pubmed/28337258
]]>