Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist.

Image result for Front Neurosci.

“We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits.

We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189.

Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state.

CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.”

N-Oleoylethanolamine Reduces Inflammatory Cytokines and Adhesion Molecules in TNF-α-induced Human Umbilical Vein Endothelial Cells by Activating CB2 and PPAR-α.

Image result for J Cardiovasc Pharmacol

“Inflammation plays a pivotal role in the pathogenesis of atherosclerosis.

Peroxisome proliferator-activated receptor-alpha (PPAR-α) and cannabinoid receptor 2 (CB2) crucially impact the modulation of inflammation.

N-Oleoylethanolamine (OEA), a natural agonist of PPAR-α, can also up-regulate the expression of CB2 in human umbilical vein endothelial cells (HUVECs) and further shows an antiatherosclerotic effect.

Our study was designed to determinate whether OEA could inhibit inflammation in HUVECs induced by tumor necrosis factor-α (TNF-α) and to identify the mechanism of OEA function.

These results suggest that OEA exerts anti-inflammatory and anti-adhesive effects on HUVECs.”

https://www.ncbi.nlm.nih.gov/pubmed/27281236

Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis.

Image result for Eur J Pharmacol.

“In mice, 2,4-dinitrofluorobenzene (DNFB) induces contact allergic dermatitis (CAD), which, in a late phase, is characterized by mast cell (MC) infiltration and angiogenesis.

Palmitoylethanolamide (PEA), an endogenous anti-inflammatory molecule, acts by down-modulating MCs following activation of the cannabinoid CB2 receptor and peroxisome proliferator-activated receptor-α (PPAR-α).

We have previously reported the anti-inflammatory effect of PEA in the early stage of CAD.

Here, we examined whether PEA reduces the features of the late stage of CAD including MC activation, angiogenesis and itching.

PEA, by reducing the features of late stage CAD in mice, may be beneficial in this pathological condition.”

https://www.ncbi.nlm.nih.gov/pubmed/27720681

Hemopressin peptides as modulators of the endocannabinoid system and their potential applications as therapeutic tools.

Image result for Protein and Peptide Letters

“The endocannabinoid system is activated by the binding of natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) as lipophilic messengers to cannabinoid receptors CB1 and CB2.

The endocannabinoid system comprises also many hydrolytic enzymes responsible for the endocannabinoids cleavage, such as FAAH and MAGL. These two enzymes are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists.

Recently a new family of endocannabinoid modulators was discovered; the lead of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g. antinociception, hypophagy, and hypotension.  It is still matter of debate whether this peptide, isolated from the brain of rats is a real neuromodulator of the endocannabinoid system.

Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist for the CB1 receptor and a μ-opioid receptor antagonist.

These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/27748182

Cannabinoids Inhibit Glioma Cell Invasion by Down-regulating Matrix Metalloproteinase-2 Expression

Cancer Research: 68 (6)

“Cannabinoids, the active components of Cannabis sativa L. and their derivatives, inhibit tumor growth in laboratory animals by inducing apoptosis of tumor cells and impairing tumor angiogenesis.

It has also been reported that these compounds inhibit tumor cell spreading.

Here, we evaluated the effect of cannabinoids on matrix metalloproteinase (MMP) expression and its effect on tumor cell invasion.

Local administration of Δ9-tetrahydrocannabinol (THC), the major active ingredient of cannabis, down-regulated MMP-2 expression in gliomas generated in mice.

This cannabinoid-induced inhibition of MMP-2 expression in gliomas.

As MMP-2 up-regulation is associated with high progression and poor prognosis of gliomas and many other tumors, MMP-2 down-regulation constitutes a new hallmark of cannabinoid antitumoral activity.

As selective CB2 receptor activation to mice has been shown to inhibit the growth and angiogenesis of gliomas, skin carcinomas and melanomas, our observations further support the possibility of finding cannabinoid-based antitumoral strategies devoid of nondesired psychotropic side effects.”

http://cancerres.aacrjournals.org/content/68/6/1945

 

Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders.

pharmaceuticals-logo

“Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB₂ receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons.

Expression of the CB₂ receptor in the brain is significantly lower than that of the CB₁ receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB₂ receptor under normal conditions.

Under inflammatory conditions, CB₂ receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB₂ receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders.

Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB₂ gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB₂ receptors in neuropsychiatric disorders.”

Activation of Cannabinoid Receptor 2 Attenuates Mechanical Allodynia and Neuroinflammatory Responses in a Chronic Post-Ischemic Pain Model of Complex Regional Pain Syndrome Type I in Rats.

Image result for European Journal of Neuroscience

“Complex regional pain syndrome type 1 (CRPS-I) remains one of the most clinically challenging neuropathic pain syndromes and its mechanism has not been fully characterized.

Cannabinoid receptor 2 (CB2) has emerged as a promising target for treating different neuropathic pain syndromes.

In neuropathic pain models, activated microglia expressing CB2 receptors are seen in the spinal cord.

Chemokine fractalkine receptor (CX3CR1) plays a substantial role in microglial activation and neuroinflammation.

We hypothesized that CB2 agonist could modulate neuroinflammation and neuropathic pain in an ischemia model of CRPS by regulating CB2 and CX3CR1 signaling.

We used chronic post-ischemia pain (CPIP) as a model of CRPS-I. Rats in the CPIP group exhibited significant hyperemia and edema of the ischemic hindpaw and spontaneous pain behaviors (hindpaw shaking and licking).

Intraperitoneal administration of MDA7 (a selective CB2 agonist) attenuated mechanical allodynia induced by CPIP. MDA7 treatment was found to interfere with early events in the CRPS-I neuroinflammatory response by suppressing peripheral edema, spinal microglial activation and expression of CX3CR1 and CB2 receptors on the microglia in the spinal cord.

MDA7 also mitigated the loss of intraepidermal nerve fibers induced by CPIP. Neuroprotective effects of MDA7 were blocked by a CB2 antagonist, AM630.

Our findings suggest that MDA7, a novel CB2 agonist, may offer an innovative therapeutic approach for treating neuropathic symptoms and neuroinflammatory responses induced by CRPS-I in the setting of ischemia and reperfusion injury.”

https://www.ncbi.nlm.nih.gov/pubmed/27717112

Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3.

Image result for Front Neurosci

“The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation.

A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation.

In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively.

Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake.

In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/27713686

Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

Image result for Front Neurosci.

“Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson’s disease, Huntington’s chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.”

Δ9-Tetrahydrocannabinol Reverses TNFα-induced Increase in Airway Epithelial Cell Permeability through CB2 Receptors.

Image result for Biochem Pharmacol

“Despite pharmacological treatment, bronchial hyperresponsiveness continues to deteriorate as airway remodelling persists in airway inflammation.

Previous studies have demonstrated that the phytocannabinoid Δ9-tetrahydrocannabinol (THC) reverses bronchoconstriction with an anti-inflammatory action.

The aim of this study was to investigate the effects of THC on bronchial epithelial cell permeability after exposure to the pro-inflammatory cytokine, TNFα. Calu-3 bronchial epithelial cells were cultured at air-liquid interface.

These data indicate that THC prevents cytokine-induced increase in airway epithelial permeability through CB2 receptor activation.

This highlights that THC, or other cannabinoid receptor ligands, could be beneficial in the prevention of inflammation-induced changes in airway epithelial cell permeability, an important feature of airways diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27641813