Cannabinoid Receptor Activation Induces Apoptosis through Tumor Necrosis Factor α–Mediated Ceramide De novo Synthesis in Colon Cancer Cells

Abstract

“PURPOSE:

Cannabinoids have been recently proposed as a new family of potential antitumor agents. The present study was undertaken to investigate the expression of the two cannabinoid receptors, CB1 and CB2, in colorectal cancer and to provide new insight into the molecular pathways underlying the apoptotic activity induced by their activation.

EXPERIMENTAL DESIGN:

Cannabinoid receptor expression was investigated in both human cancer specimens and in the DLD-1 and HT29 colon cancer cell lines. The effects of the CB1 agonist arachinodyl-2′-chloroethylamide and the CB2 agonist N-cyclopentyl-7-methyl-1-(2-morpholin-4-ylethyl)-1,8-naphthyridin-4(1H)-on-3-carboxamide (CB13) on tumor cell apoptosis and ceramide and tumor necrosis factor (TNF)-alpha production were evaluated. The knockdown of TNF-alpha mRNA was obtained with the use of selective small interfering RNA.

RESULTS:

We show that the CB1 receptor was mainly expressed in human normal colonic epithelium whereas tumor tissue was strongly positive for the CB2 receptor. The activation of the CB1 and, more efficiently, of the CB2 receptors induced apoptosis and increased ceramide levels in the DLD-1 and HT29 cells. Apoptosis was prevented by the pharmacologic inhibition of ceramide de novo synthesis. The CB2 agonist CB13 also reduced the growth of DLD-1 cells in a mouse model of colon cancer. The knockdown of TNF-alpha mRNA abrogated the ceramide increase and, therefore, the apoptotic effect induced by cannabinoid receptor activation.

CONCLUSIONS:

The present study shows that either CB1 or CB2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. Our data unveiled, for the first time, that TNF-alpha acts as a link between cannabinoid receptor activation and ceramide production.”

http://clincancerres.aacrjournals.org/content/14/23/7691.long

Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil.

Abstract

“Cannabinoids (CBs) have been found to exert antiproliferative effects upon a variety of cancer cells, including colorectal carcinoma cells. However, little is known about the signalling mechanisms behind the antitumoural effect in these cells, whether the effects are shared by endogenous lipids related to endocannabinoids, or whether such effects are synergistic with treatment paradigms currently used in the clinic. The aim of this preclinical study was to investigate the effect of synthetic and endogenous CBs and their related fatty acids on the viability of human colorectal carcinoma Caco-2 cells, and to determine whether CB effects are synergistic with those seen with the pyrimidine antagonist 5-fluorouracil (5-FU). The synthetic CB HU 210, the endogenous CB anandamide, the endogenous structural analogue of anandamide, N-arachidonoyl glycine (NAGly), as well as the related polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid showed antiproliferative and cytotoxic effects in the Caco-2 cells, as measured by using [(3)H]-thymidine incorporation assay, the CyQUANT proliferation assay and calcein-AM fluorescence. HU 210 was the most potent compound examined, followed by anandamide, whereas NAGly showed equal potency and efficacy as the polyunsaturated fatty acids. Furthermore, HU 210 and 5-FU produced synergistic effects in the Caco-2 cells, but not in the human colorectal carcinoma cell lines HCT116 or HT29. The compounds examined produced cytotoxic, rather than antiproliferative effects, by a mechanism not involving CB receptors, since the CB receptor antagonists AM251 and AM630 did not attenuate the effects, nor did pertussis toxin. However, alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME attenuated the CB toxicity, suggesting involvement of oxidative stress. It is concluded that the CB system may provide new targets for the development of drugs to treat colorectal cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/18629502

Interaction of endocannabinoid system and steroid hormones in the control of colon cancer cell growth.

Abstract

“Increasing evidence suggest the role of the cannabinoid receptors (CBs) in the control of cell survival or death and signaling pathways involved in tumor progression. Cancer cell lines are characterized by a subtle modulation of CB levels which produces a modified responsiveness to specific ligands, but the molecular mechanisms underlying these events are poorly and partially understood. We previously provided evidence that the endocannabinoid (EC) anandamide (AEA) exerts anti-proliferative effect likely by modulation of the expression of genes involved in the cellular fate. In this study we focused on the role of the CB1 receptor, ECs, and steroids in the mechanisms involved in colorectal cancer (CRC) cell growth inhibition in vitro. We demonstrated that, in DLD1 and SW620 cells, 17β-estradiol induced a specific and strong up-regulation of the CB1 receptor by triggering activation of the CB1 promoting region, localized at the exon 1 of the CNR1 gene. Moreover, treatment of DLD1 and SW620 cells with Met-F-AEA, a stable AEA-analogous, or URB597, a selective inhibitor of FAAH, induced up-regulation of CB1 expression by co-localization of PPARγ and RXRα at the promoting region. Finally, increased availability of AEA, of both exogenous and endogenous sources, induced the expression of estrogen receptor-beta in both cell lines. Our results partially elucidated the role of EC system in the molecular mechanisms enrolled by steroids in the inhibition of colon cancer cell growth and strongly suggested that targeting the EC system could represent a promising tool to improve the efficacy of CRC treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/21412772

Possible endocannabinoid control of colorectal cancer growth.

Abstract

“BACKGROUND & AIMS:

The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit cancer cell proliferation by acting at cannabinoid receptors (CBRs). We studied (1). the levels of endocannabinoids, cannabinoid CB(1) and CB(2) receptors, and fatty acid amide hydrolase (FAAH, which catalyzes endocannabinoid hydrolysis) in colorectal carcinomas (CRC), adenomatous polyps, and neighboring healthy mucosa; and (2). the effects of endocannabinoids, and of inhibitors of their inactivation, on human CRC cell proliferation.

METHODS:

Tissues were obtained from 21 patients by biopsy during colonoscopy. Endocannabinoids were measured by liquid chromatography-mass spectrometry (LC-MS). CB(1), CB(2), and FAAH expression were analyzed by RT-PCR and Western immunoblotting. CRC cell lines (CaCo-2 and DLD-1) were used to test antiproliferative effects.

RESULTS:

All tissues and cells analyzed contain anandamide, 2-AG, CBRs, and FAAH. The levels of the endocannabinoids are 3- and 2-fold higher in adenomas and CRCs than normal mucosa. Anandamide, 2-AG, and the CBR agonist HU-210 potently inhibit CaCo-2 cell proliferation. This effect is blocked by the CB(1) antagonist SR141716A, but not by the CB(2) antagonist SR144528, and is mimicked by CB(1)-selective, but not CB(2)-selective, agonists. In DLD-1 cells, both CB(1) and CB(2) receptors mediate inhibition of proliferation. Inhibitors of endocannabinoid inactivation enhance CaCo-2 cell endocannabinoid levels and block cell proliferation, this effect being antagonized by SR141716A. CaCo-2 cell differentiation into noninvasive cells results in increased FAAH expression, lower endocannabinoid levels, and no responsiveness to cannabinoids.

CONCLUSIONS:

Endocannabinoid levels are enhanced in transformed colon mucosa cells possibly to counteract proliferation via CBRs. Inhibitors of endocannabinoid inactivation may prove useful anticancer agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12949714

Biochemical changes in endocannabinoid system are expressed in platelets of female but not male migraineurs.

Abstract

“The endogenous cannabinoid anandamide (AEA) plays important roles in modulating pain. Head pain is an almost universal human experience, yet primary headache disorders, such as migraine without aura (MoA) or episodic tension-type headache (ETTH), can represent a serious threat to well-being when frequent and disabling. We assessed the discriminating role of endocannabinoids among patients with ETTH or MoA, and control subjects. We measured the activity of AEA hydrolase and AEA transporter, and the level of cannabinoid receptors in peripheral platelets from MoA, ETTH and healthy controls. Sixty-nine headache patients and 36 controls were selected. Diagnosis of headache type was made according to the International Headache Society criteria. We observed significant sex differences concerning AEA membrane transporter and fatty acid amide hydrolase activity in all groups. An increase in the activity of AEA hydrolase and AEA transporter was found in female but not male migraineurs. Cannabinoid receptors were the same in all groups. Here we show that the endocannabinoid system in human platelets is altered in female but not male migraneurs. Our results suggest that in migraineur women an increased AEA degradation by platelets, and hence a reduced concentration of AEA in blood, might reduce the pain threshold and possibly explain the prevalence of migraine in women. The involvement of the endocannabinoid system in migraine is new and broadens our knowledge of this widespread and multifactorial disease.”

http://www.ncbi.nlm.nih.gov/pubmed/16472333

Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels.

Abstract

“BACKGROUND:

Chronic migraine (CM) and medication-overuse headaches (MOH) are well-recognized disabling conditions affecting a significant portion of the headache population attending centers specialized in treating headaches. A dysfunctioning of the serotonergic system has been demonstrated in MOH and CM patients. Here we report on our assessment of the dysfunctioning of the endocannabinoid system as a potential underlying factor in pathogenic mechanisms involved in CM and MOH.

METHOD:

To test the hypothesis of an impairment in the endocannabinoid system in patients with MOH and CM and to assess its relationship with any disruption of the serotonergic system, we determined the levels of the two main endogenous cannabinoids, anandamide (AEA) and 2-acylglycerol (2-AG), in platelets of 20 CM patients, 20 MOH patients and 20 control subjects and also measured the platelet serotonin levels in the same patients.

RESULTS:

We found that 2-AG and AEA levels were significantly lower in MOH patients and CM patients than in the control subjects, without significant differences between the two patient groups. Serotonin levels were also strongly reduced in the two patient groups and were correlated with 2-AG levels, with higher values for MOH patients.

CONCLUSION:

These data support the potential involvement of a dysfunctioning of the endocannabinoid and serotonergic systems in the pathology of CM and MOH. These systems appear to be mutually related and able to contribute to the chronification of both CM and MOH.”

http://www.ncbi.nlm.nih.gov/pubmed/18004553

Acute Reduction of Anandamide-Hydrolase (FAAH) Activity is Coupled With a Reduction of Nociceptive Pathways Facilitation in Medication-Overuse Headache Subjects After Withdrawal Treatment.

Abstract

“Objectives.- We investigated (1) a possible relationship between the functional activity of the endocannabinoid system and the facilitation of pain processing in migraineurs with medication-overuse headache, and (2) the effect of withdrawal treatment on both. Background.- The endocannabinoid system antinociception effect includes prevention of nociceptive pathways sensitization. The sensitization of the pain pathways has been demonstrated to be pivotal in the development and maintenance of chronic form of migraine, including medication-overuse headache. Methods.- We used the temporal summation threshold of the nociceptive withdrawal reflex to explore the spinal cord pain processing, and the platelet activity of the enzyme fatty acid amide hydrolase to detect the functional state of the endocannabinoid system in 27 medication-overuse headache subjects before and 10 and 60 days after a standard withdrawal treatment and compared results with those of 14 controls. Results.- A significantly reduced temporal summation threshold and increased related pain sensation was found in subjects before withdrawal treatment when compared with controls. A significant fatty acid amide hydrolase activity reduction coupled with a significant improvement (reduction) in facilitation of spinal cord pain processing (increase in temporal summation threshold and reduction in related pain sensation) was found in medication-overuse headache subjects at both 10 and 60 days after withdrawal treatment when compared with medication-overuse headache subjects before withdrawal treatment. Conclusions.- We demonstrated a marked facilitation in spinal cord pain processing in medication-overuse headache before withdrawal treatment when compared with controls. Furthermore, the acute reduction of the fatty acid amide hydrolase activity coupled with a reduction of the facilitation in pain processing immediately (10 days) after withdrawal treatment and its persistence 60 days after withdrawal treatment could represent the consequence of a mechanism devoted to acutely reduce the degradation of endocannabinoids and aimed to increase the activity of the endocannabinoid system that results in an antinociceptive effect.”

http://www.ncbi.nlm.nih.gov/pubmed/22670561

Anandamide Is Able to Inhibit Trigeminal Neurons Using an in Vivo Model of Trigeminovascular-Mediated Nociception

Abstract

“Arachidonylethanolamide (anandamide, AEA) is believed to be the endogenous ligand of the cannabinoid CB(1) and CB(2) receptors. CB(1) receptors have been found localized on fibers in the spinal trigeminal tract and spinal trigeminal nucleus caudalis. Known behavioral effects of anandamide are antinociception, catalepsy, hypothermia, and depression of motor activity, similar to Delta(9)-tetrahydocannanbinol, the psychoactive constituent of cannabis. It may be a possible therapeutic target for migraine. In this study, we looked at the possible role of the CB(1) receptor in the trigeminovascular system, using intravital microscopy to study the effects of anandamide against various vasodilator agents. Anandamide was able to inhibit dural blood vessel dilation brought about by electrical stimulation by 50%, calcitonin gene-related peptide (CGRP) by 30%, capsaicin by 45%, and nitric oxide by 40%. CGRP(8-37) was also able to attenuate nitric oxide (NO)-induced dilation by 50%. The anandamide inhibition was reversed by the CB(1) receptor antagonist AM251. Anandamide also reduced the blood pressure changes caused by CGRP injection, this effect was not reversed by AM251. It would seem that anandamide acts both presynaptically, to prevent CGRP release from trigeminal sensory fibers, and postsynaptically to inhibit the CGRP-induced NO release in the smooth muscle of dural arteries. CB(1) receptors seem to be involved in the NO/CGRP relationship that exists in causing headache and dural blood vessel dilation. It also seems that some of the blood pressure changes caused by anandamide are mediated by a noncannabinoid receptor, as AM251 was unable to reverse these effects. It can be suggested that anandamide is tonically released to play some form of modulatory role in the trigeminovascular system.

The known behavioral effects of anandamide are similar to that of Δ9-tetrahydrocannabinol, the psychoactive constituent of cannabis, being antinociception, catalepsy, hypothermia, and depression of motor activity (Dewey, 1986; Adams et al., 1998). Although there is a history of anecdotal evidence suggesting the use of cannabinoids is effective at reducing headache and providing other pain relief, its potential as an acute migraine treatment and even preventive has never been scientifically studied in animal studies or clinical trial (Russo, 1998). However, one anonymous standardized survey found that of those using cannabis medicinally, over 10% were using it to relieve headache or migraine (Schnelle et al., 1999). Although many aspects of the study are open to debate, such as the highly selected nature of patient group, it is nevertheless an interesting observation.”

http://jpet.aspetjournals.org/content/309/1/56.long

Cannabinoid (CB1) Receptor Activation Inhibits Trigeminovascular Neurons

Abstract

“Migraine is a common and disabling neurological disorder that involves activation or the perception of activation of the trigeminovascular system. Cannabinoid (CB) receptors are present in brain and have been suggested to be antinociceptive. Here we determined the effect of cannabinoid receptor activation on neurons with trigeminovascular nociceptive input in the rat. Neurons in the trigeminocervical complex (TCC) were studied using extracellular electrophysiological techniques. Responses to both dural electrical stimulation and cutaneous facial receptive field activation of the ophthalmic division of the trigeminal nerve and the effect of cannabinoid agonists and antagonists were studied. Nonselective CB receptor activation with R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl) (WIN55,212; 1 mg kg(-1)) inhibited neuronal responses to A-(by 52%) and C-fiber (by 44%) afferents, an effect blocked by the CB(1) receptor antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; 3 mg kg(-1)] but not the CB2 receptor antagonist AM630 (6-iodopravadoline; 3 mg kg(-1)). Anandamide (10 mg kg(-1)) was able to inhibit both A- and C-fiber-elicited TCC firing, only after transient receptor potential vanilloid 1 receptor inhibition. Activation of cannabinoid receptors had no effect on cutaneous receptive fields when recorded from TCC neurons. The data show that manipulation of CB1 receptors can affect the responses of trigeminal neurons with A- and C-fiber inputs from the dura mater. This may be a direct effect on neurons in the TCC itself or an effect in discrete areas of the brain that innervate these neurons. The data suggest that CB receptors may have therapeutic potential in migraine, cluster headache, or other primary headaches, although the potential hazards of psychoactive side effects that accompany cannabinoid treatments may be complex to overcome.”

“In conclusion, activation of CB1 receptors is able to inhibit trigeminal neurons with A-fiber and C-fiber input in the TCC in response to activation of the ophthalmic division of the trigeminal nerve. Anandamide was only able to inhibit neurons with A-fiber inputs after inhibition of the TRPV1 receptor, highlighting the dual agonist properties of anandamide in the brain. These results support an involvement of the cannabinoid CB1 receptor and TRPV1 receptors in trigeminal neuronal firing, helping to further understand the pathophysiology of the trigeminovascular system and indicate potential directions for the development of new therapeutic agents, notwithstanding the potential difficulties of the psychoactive side effects accompanying cannabinoid treatments.”

http://jpet.aspetjournals.org/content/320/1/64.long

Degradation of endocannabinoids in chronic migraine and medication overuse headache.

Abstract

“Chronic migraine (CM) is frequently associated with medication overuse headache (MOH). The endocannabinoid system plays a role in modulating pain including headache and is involved in the common neurobiological mechanism underlying drug addiction and reward system. Anandamide (AEA) and 2-arachidonoylglycerol are the most biologically active endocannabinoids, which bind to both central and peripheral cannabinoid receptors. The level of AEA in the extracellular space is controlled by cellular uptake via a specific AEA membrane transporter (AMT), followed by intracellular degradation by the enzyme AEA hydrolase (fatty acid amide hydrolase, FAAH). AMT and FAAH have also been characterized in human platelets. We assayed the activity of AMT and of FAAH in platelets isolated from four groups of subjects: MOH, CM without MOH, episodic migraine and controls. AMT and FAAH were significantly reduced in CM and MOH, compared to either controls or episodic migraine group. This latter finding was observed in both males and females with CM and MOH. Changes observed in the biochemical mechanisms degrading endogenous cannabinoids may reflect an adaptative behaviour induced by chronic headache and/or drug overuse.”

http://www.ncbi.nlm.nih.gov/pubmed/18358734