Antinociceptive activity of Delta9-tetrahydrocannabinol non-ionic microemulsions.

“Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the major psychoactive constituent of Cannabis sativa L., has been widely studied for its potential pharmaceutical application in the treatment of various diseases and disturbs.

The aim of this work was to develop a stable aqueous Delta(9)-THC formulation acceptable for different ways of administration, and to evaluate the therapeutic properties of the new Delta(9)-THC based preparation for pain treatment.

Significant antinociceptive activity has been detected by both intraperitoneal and intragastric administration of the new Delta(9)-THC pharmaceutical preparation.”

http://www.ncbi.nlm.nih.gov/pubmed/20399844

Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model.

“Experimental animal models of migraine have suggested the existence of interactions between the endocannabinoid system and pain mediation in migraine.

Extensive evidence has demonstrated a role for the cannabinoid-1 (CB1) receptor in antinociception.

…recent research suggests that also CB2 receptors, especially located outside the central nervous system, play a role in the perception of pain…

In this study we evaluated the role of CB2 receptors in two animal models of pain that may be relevant for migraine…

CONCLUSION:

These findings suggest that the pharmacological manipulation of the CB2 receptor may represent a potential therapeutic tool for the treatment of migraine.”

http://www.ncbi.nlm.nih.gov/pubmed/24636539

CB2 cannabinoid receptor mediation of antinociception.

“Management of acute pain remains a significant clinical problem. In preclinical studies, CB2 cannabinoid receptor-selective agonists inhibit nociception without producing central nervous system side effects.

The experiments reported here further test the hypothesis that CB2 receptor activation inhibits nociception…

The CB2 receptor-selective agonist produces antinociceptive… activation of CB2 receptors results in antinociception…

…confirm the potential therapeutic relevance of CB2 cannabinoid receptors for the treatment of acute pain.”

http://www.ncbi.nlm.nih.gov/pubmed/16563625

Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic.

“The limited effectiveness of current therapies against Alzheimer’s disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer.

The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors… Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models…

Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress.

The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial.”

http://www.ncbi.nlm.nih.gov/pubmed/24634659

“Considering the numerous complex pathological mechanisms involved in the progression of AD, treatments targeting a single causal or modifying factor offer limited benefit. Cannabinoids, however, exhibit pleiotropic activity, targeting in parallel several processes that play key roles in AD…”

Full: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942876/

“Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation…Our results indicate that cannabinoid receptors are important in the pathology of AD and that cannabinoids succeed in preventing the neurodegenerative process occurring in the disease.” http://www.jneurosci.org/content/25/8/1904.long

Therapeutic Potential of Cannabinoids in Schizophrenia.

“Increasing evidence suggests a close relationship between the endocannabinoid system and schizophrenia.

The endocannabinoid system comprises of two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana’s psychoactive principle Δ9-tetrahydrocannabinol), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and proteins for endocannabinoid biosynthesis and degradation.

…antipsychotic compounds which manipulate this system may provide a novel therapeutic target for the treatment of schizophrenia.

The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of schizophrenic symptomatology.

Furthermore, this review will be highlighting the therapeutic potential of cannabinoid-related compounds and presenting some promising patents targeting potential treatment options for schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/24605939

Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain

“Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia.

Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915876/

Cannabis (Medical Marijuana) Treatment for Motor and Non-Motor Symptoms of Parkinson Disease: An Open-Label Observational Study.

“The use of cannabis as a therapeutic agent for various medical conditions has been well documented…The aim of the present open-label observational study was to assess the clinical effect of cannabis on motor and non-motor symptoms of Parkinson disease (PD).

Analysis of specific motor symptoms revealed significant improvement after treatment…

There was also significant improvement of sleep and pain scores. No significant adverse effects of the drug were observed.

The study suggests that cannabis might have a place in the therapeutic armamentarium of PD.”

http://www.ncbi.nlm.nih.gov/pubmed/24614667

A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping

“The effectiveness of cannabidiolic acid (CBDA) was compared with other potential treatments for anticipatory nausea (AN), using a rat model of contextually elicited conditioned gaping reactions…

Conclusions

CBDA has therapeutic potential as a highly potent and selective treatment for AN without psychoactive or locomotor effects.”

http://link.springer.com/article/10.1007/s00213-014-3498-1

Role of the Endocannabinoid System in the Neuroendocrine Responses to Inflammation.

“… the endocannabinoid system has been recognized as a major neuromodulatory system whose main functions are to exert and maintain the body homeostasis.

The coordinated neural, immune, behavioral and endocrine responses to inflammation are orchestrated to provide an important defense against infections and help homeostasis restoration in the body. These responses are executed and controlled mainly by the hypothalamic-pituitary adrenal axis. Also, the hypothalamic-neurohypophyseal system is essential for survival and plays a role recovering the homeostasis under a variety of stress conditions, including inflammation and infection.

Since the endocannabinoid system components are present at sites involved in the hypothalamic-pituitary axis regulation, several studies were performed in order to investigate the endocannabinoid-mediated neurotransmitters and hormones secretion under physiological and pathological conditions.

In the present review we focused on the endocannabinoids actions on the neuroendocrine response to inflammation and infection. We provide a detailed overview of the current understanding of the role of the endocannabinoid system in the recovering of homeostasis as well as potential pharmacological therapies based on the manipulation of endocannabinoid system components that could provide novel treatments for a wide range of disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24588819

Target-Selective Phototherapy Using a Ligand-Based Photosensitizer for Type 2 Cannabinoid Receptor.

“Phototherapy is a powerful, noninvasive approach for cancer treatment, with several agents currently in clinical use.

…we developed a phototherapy agent that combines a functional ligand and a near infrared phthalocyanine dye. Our target is type 2 cannabinoid receptor (CB2R), considered an attractive therapeutic target for phototherapy given it is overexpressed by many types of cancers that are located at a surface or can be reached by an endoscope.

Overall, this opens up the opportunity for development of an alternative treatment option for CB2R-positive cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/24583052