Proteomic Analysis of Invasive Breast Cancer Cells Treated with CBD Reveals Proteins Associated with the Reversal of Their Epithelial-Mesenchymal Transition Induced by IL-1β

pubmed logo

“Cannabidiol (CBD) has shown promise in treating cancers with an inflammatory microenvironment.

Although it has been demonstrated that IL-1β induces epithelial-mesenchymal transition (EMT) of MCF-7 cells and CBD reverts this process, in restoring the epithelial non-invasive phenotype, there is limited understanding of how this cannabinoid regulates these processes.

In this work, MCF-7 cells were induced to adopt an aggressive phenotype (6D cells), which was reversed by CBD.

Then, protein expression was analyzed by mass spectrometry to compare 6D vs. MCF-7 cells and 6D+CBD vs. 6D cells proteomes. Novel proteins associated with EMT and CBD signaling were identified. Twenty-four of them were oppositely regulated by IL-1β and CBD, suggesting new points of crosstalk between the IL-1β and CBD signaling pathways.

From the data, two protein networks were constructed: one related to EMT with 58 up-regulated proteins and another with 21 related to CBD signaling. The first one showed the proteins BRCA1, MSN, and CORO1A as the key axis that contributes to the establishment of a mesenchymal phenotype. In the CBD signaling, the key axis was formed by SUPT16H, SETD2, and H2BC12, which suggests epigenetic regulation by CBD in the restoration of an epithelial phenotype of breast cancer cells, providing new targets for anticancer therapy.”

https://pubmed.ncbi.nlm.nih.gov/40429863/

“All these results provide new important insights that could help to understand how CBD counteracts the effects of IL-1β and the restoration of the epithelial phenotype as a possible control of cancer progression.”

https://www.mdpi.com/1422-0067/26/10/4721

Nucleolar sequestration of cannabinoid type-2 receptors in triple-negative breast cancer cells

pubmed logo

“Multiple investigations have shown that the different types of cannabinoids, phytocannabinoids, synthetic cannabinoids, and endocannabinoids, possess antiproliferative and anticancer properties.

The cannabinoid type-2 receptor (CB2R) has been proposed as a central player in tumor progression and has been correlated with the aggressiveness of breast cancer. Using immunocytochemistry and confocal microscopy, in the present work, we studied the expression level and subcellular localization of CB2R in two human triple-negative breast cancer (TNBC) cell lines, corresponding to early (stage I, HCC-1395) and metastatic (MDA-MB-231) stages, and they were compared with a non-tumoral mammary epithelial cell line (MCF-10A).

We found that although CB2R was detected at the plasma membrane, it was mainly localized intracellularly, with ~40-fold higher expression in both TNBC cell lines than in MCF-10A (P < 0.0001). Notably, double staining with DAPI or with the nucleoli-specific fluorescent marker (3xnls-mTurquoise2) showed that most of the CB2R overexpressed in the nucleoli of cancer cells.

This finding is supported by the fact that CB2R expression was markedly lower in mitotic cells compared to interphase cells (P < 0.0001). Interestingly, exposure of cancer cells to the specific agonist HU-308 reversed the nucleolar sequestration of CB2R while increasing the presence of the receptor in the nucleoplasm and cytoplasm (P < 0.0001). In addition, we found that this agonist reduced both the cell migration (P < 0.05-0.0001) and proliferation (P < 0.001) of TNBC cells. It remains to determine the function and signaling ability of CB2R in the nucleolus.

Although our study only includes cell lines (tumoral and non-tumoral), we consider that this feature of nucleolar sequestration of CB2R could be a potential diagnostic marker for TNBC from the early stage.”

https://pubmed.ncbi.nlm.nih.gov/40359210/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323554

Cannabidiol-loaded-injectable depot formulation for the treatment of triple-negative breast cancer: design, development, in-vitro and in-ovo evaluation of its anticancer activity

pubmed logo

“Triple-negative breast cancer (TNBC) is an invasive and difficult-to-treat carcinoma that represents 15-20 % of breast malignancies and is frequently diagnosed in younger women. Chemotherapy is the mainstay treatment approach.

Cannabidiol (CBD), the main non-psychoactive cannabinoid, has shown a potential anticancer activity in TNBC, enhancing the effect of conventional antineoplastics.

This research aims to develop in situ forming implants (ISFIs) as a long-acting depot formulation of CBD with potential application in TNBC. This formulation is intended to be administered in the tumor site during neoadjuvant chemotherapeutic regimens, allowing a controlled CBD release. ISFIs were elaborated with 100 mg of polycaprolactone (PCL) and 2.5 mg (2.5-CB-ISFI), 5 mg (5-CB-ISFI) or 10 mg (10-CB-ISFI) of CBD dissolved in 400 µL of NMP. All the formulations exhibited a controlled drug release for around two months. 10-CB-ISFI formulation with the highest CBD content and the most suitable CBD release profile was selected for biological studies.

This formulation inhibited the proliferation and migration of MDA-MB-231 and 4T1 cells and exerted an antiangiogenic effect in ovo. Interestingly, the antiangiogenic activity of 10-CB-ISFI was higher compared with CBD in solution administered at the same concentration, showing vascular inhibition percentages of around 80 % and 60 %, respectively.

Finally, this formulation reduced the growth of MDA-MB-231-derived tumors developed in the chorioallantoic membrane (CAM) model. The single administration of 10-CB-ISFI exhibited a similar antitumor efficacy to the daily administration of CBD in solution (≈60 % tumor growth inhibition).

Therefore, the injectable depot formulation of CBD developed in this work showed a promising utility in TNBC treatment.”

https://pubmed.ncbi.nlm.nih.gov/40349999/

https://www.sciencedirect.com/science/article/pii/S0378517325005472?via%3Dihub

Cannabinol improves exemestane efficacy in estrogen receptor-positive breast cancer models: a comparative study with cannabidiol

pubmed logo

“Cannabinoids have been used as anti-emetic agents in cancer. However, multiple studies suggest that cannabinoids present important anti-tumor actions as well.

Estrogen receptor-positive (ER+) breast cancer is the most diagnosed breast cancer subtype, and despite the success of endocrine therapy, endocrine resistance development is a major challenge, demanding the discovery or implementation of alternative therapeutic approaches.

In line with this, and following our previous work, the benefits of combining the aromatase inhibitors (AIs) used in the clinic, anastrozole (Ana), letrozole (Let), and exemestane (Exe), with cannabinol (CBN) were evaluated. Experiments were performed in MCF-7aro cells and spheroids to assess activity against specific molecular targets and underlying mechanisms of action.

Among the three AIs studied, only the combination of CBN with Exe induced a significant beneficial impact on viability and growth of ER+ breast cancer cells and spheroids.

Our results demonstrated that this combination was more effective than Exe in preventing the expression of aromatase and in modulating ERα and androgen receptor (AR) activity.

In fact, the results revealed that CBN can prevent de novo synthesis of aromatase, surpass Exe’s weak estrogen-like effect, and avoid the unfavorable overexpression of AR. By comparing these two therapeutic strategies, as well as the previously studied combination of Exe plus cannabidiol (CBD), differential transcriptome profiles were detected, which may help to better understand the mechanism of action of cannabinoids and disclose their full potential in breast cancer treatment.

In conclusion, this study strengthens the hypothesis that cannabinoids are important anti-cancer agents with attractive co-adjuvant properties.”

https://pubmed.ncbi.nlm.nih.gov/40345424/

https://www.sciencedirect.com/science/article/pii/S0014299925004662?via%3Dihub

Cannabidiol as a novel therapeutic agent in breast cancer: evidence from literature

pubmed logo

“Background: Breast cancer is one of the most prevalent cancers worldwide, posing significant challenges due to its heterogeneity and the emergence of drug resistance. Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis sativa, has recently gained attention for its potential therapeutic effects in breast cancer.

Objective: This review aims to evaluate the antitumor effects of CBD in breast cancer treatment by synthesizing preclinical and clinical evidence, elucidating its mechanisms of action, and exploring its translational potential.

Methods: A systematic review was conducted following PRISMA guidelines. A comprehensive search was performed across PubMed, Google Scholar, Web of Science, and Scopus databases, using keywords such as “Cannabidiol,” “CBD,” “Breast Cancer,” “Therapeutic Agent,” and “Antitumor Effects.” A total of 1,191 articles were initially identified. After duplicate removal and eligibility screening, 34 studies published between 1998 and 2025 were selected, including in vitro, in vivo, and clinical investigations. Studies were assessed based on PRISMA recommendations, considering inclusion criteria such as CBD’s impact on apoptosis, cell proliferation, tumor progression, and molecular mechanisms.

Results: CBD demonstrated significant anticancer effects, including induction of apoptosis, inhibition of cell proliferation, suppression of metastasis, and modulation of the tumor microenvironment. Mechanistically, CBD modulates key pathways such as PI3K/Akt, mTOR, and PPARγ and interacts with CB1, CB2, and non-cannabinoid receptors. Preclinical studies showed CBD’s efficacy, particularly in triple-negative breast cancer (TNBC), while limited clinical trials highlighted its potential as an adjunct to conventional therapies.

Conclusion: CBD offers a promising therapeutic approach for breast cancer, especially for aggressive subtypes like TNBC. However, challenges such as variability in study design, lack of standardized protocols, and limited clinical validation hinder its clinical application. Future research should focus on conducting robust clinical trials, identifying predictive biomarkers, and optimizing combinatorial therapies to integrate CBD into personalized cancer treatment strategies.”

https://pubmed.ncbi.nlm.nih.gov/40275168/

“CBD holds significant promise as a complementary or standalone therapeutic agent in breast cancer treatment, particularly in TNBC, where conventional options are limited. However, clinical validation through well-designed trials, biomarker identification, and safety profiling remains imperative before widespread clinical adoption. Future studies should focus on optimizing combinatorial therapies, investigating long-term effects, and refining pharmacological formulations to bridge the gap between preclinical findings and clinical application. By addressing these challenges, CBD could potentially redefine breast cancer management strategies, offering a safer, more effective, and targeted approach to treatment.”

https://bmccancer.biomedcentral.com/articles/10.1186/s12885-025-14175-z

Cannabidiol for Scan-Related Anxiety in Women With Advanced Breast Cancer: A Randomized Clinical Trial

pubmed logo

“Importance: Early evidence from studies outside of oncology has suggested that cannabidiol (CBD) may have anxiolytic effects without neuropsychiatric risks. An understanding of oral CBD in patients with cancer-related anxiety is urgently needed.

Objective: To determine whether a single 400-mg oral dose of a US Food and Drug Administration-approved CBD improves clinical anxiety in an oncologic population.

Design, setting, and participants: This phase II, double-masked, placebo-controlled, randomized clinical trial was performed at the Dana-Farber Cancer Institute’s Breast Oncology Center from November 2, 2021, through March 1, 2023. Women aged 18 years or older with advanced breast cancer and baseline clinical anxiety were included.

Interventions: Patients were randomized 1:1 to receive oral CBD, 400 mg, vs placebo within 48 hours before a scan assessing tumor burden.

Main outcomes and measures: The primary end point was a between-arm comparison of change scores on the afraid subscale of the Visual Analog Mood Scale (VAMS) before and 2 to 4 hours after study drug ingestion. The VAMS scores were converted to T-scores to facilitate interpretation of mood change (>20 indicates a reliable change, >30 indicates both a reliable and clinically significant change). Exploratory outcomes included between-arm comparisons of anxiety levels 2 to 4 hours after study drug ingestion, between-arm comparisons of change scores on other VAMS subscales, and safety.

Results: Among the 50 participants, 25 were randomized to the placebo arm (mean [range] age, 57 [37-81] years) and 25 were randomized to the CBD arm (mean [range] age, 60 [30-79] years). The primary end point of VAMS afraid subscale change score, although numerically greater in the CBD arm, was not significantly different between arms (mean [SD]: CBD, -19.1 [15.4]; placebo, -15.0 [10.9]; P = .37). The secondary outcome directly comparing anxiety levels between arms 2 to 4 hours after study drug ingestion demonstrated significantly lower VAMS afraid T-scores for participants who received CBD compared with those receiving placebo (mean [SD]: CBD, 51.5 [12.8]; placebo, 58.0 [11.6]; P = .02). No grade 3 or 4 toxic effects were reported.

Conclusions and relevance: The findings of this randomized clinical trial show that CBD can be used safely in women with advanced breast cancer and clinical anxiety. Although the study did not meet its primary end point comparing preingestion vs postingestion anxiety change scores between study arms, anxiety levels in the CBD arm were significantly lower 2 to 4 hours after ingestion, suggesting a possible anxiolytic effect and warranting further investigation.”

https://pubmed.ncbi.nlm.nih.gov/39680411/

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2828077

Cannabidiol effects in stem cells: A systematic review

pubmed logo

“Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse.

Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs.

Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article).

Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro.

Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.”

https://pubmed.ncbi.nlm.nih.gov/39653426/

https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.2148

Discovery of Ring-Annulated Analogues of Cannabidiol as Potential Anticancer Agents: Synthesis and Biological Evaluation

pubmed logo

“Cannabidiol (CBD) is a nonpsychoactive cannabinoid derived from Cannabis sativa and its potential therapeutic effects extend beyond its well-known antiepileptic properties. Exploring CBD and its analogues as anticancer agents has gained significant attention in recent years.

In this study, a series of novel ring-annulated analogues of CBD with oxazinyl moiety were synthesized and evaluated for their antiproliferative effect.

The analogues 4d and 4h demonstrate promising activity against breast and colorectal cancer. Furthermore, mechanistic insights revealed that the identified candidates arrest the G1 phase of the cell cycle and induce apoptosis via the mitochondrial pathway in breast cancer cell lines.

Notably, CBD ring-annulated analogues 4d or 4h exhibit enhanced solubility, better metabolic stability, and lowered cytochrome P450 (CYP) inhibition liability compared to CBD.

These multifaceted attributes highlight the potential of cannabinoid-based candidates for further preclinical development.”

https://pubmed.ncbi.nlm.nih.gov/39563806/

https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00233

Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells

pubmed logo

“Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought.

The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival.

Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells.

The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways.

Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.”

https://pubmed.ncbi.nlm.nih.gov/39527598/

“Our study demonstrated that the presence of CB agonists hindered breast cancer cell growth, cell cycle progression, invasion through extracellular matrices and lamellipodia formation. The exposure of specific combination of CB1 and CB2 agonists also enhanced their breast cancer suppression effects. Moreover, breast cancer survival and motility-related proteins affected by the presence of these agonists suggesting the potential pathways underlying their effects were also depicted in this study.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312851

Improved Therapeutic Efficacy of Doxorubicin Chemotherapy With Cannabidiol in 4T1 Mice Breast Cancer Model

pubmed logo

“Background: High dose chemotherapy is one of the therapeutic strategies for breast cancer and doxorubicin (DOX) as a chemotherapy agent is widely used. DOX indication is limited due to its dose-depended cardiotoxicity. Recently, cannabidiol (CBD) shows antitumoral and cardioprotective effects, so we hypothesized that CBD administration with high-dose DOX chemotherapy can improve anticancer activity and reduce cardiotoxic side effects.

Method: Mice breast cancer model established by injecting 4T1 cell lines. One group was not injected by 4T1 cells as a not cancerous group and received normal saline (NS, 0.1 mL). In cancerous groups, first group was considered as cancerous control and received NS (0.1 mL); the second group received CBD (5 mg/kg, IP) on Days 1,7, and 14; in the third group DOX (5 mg/kg, IV) as CBD schedule was administrated; the fourth group treated with CBD 1 day before DOX injection as pretreatment, and the last group was treated with CBD and DOX at same time with previous doses and schedules. On Day 21, all mice were sacrificed, heart and lungs tissues were obtained and histological sections were isolated. SOD2, iNOS, MMP2, MMP9 were evaluated through western blot and TUNEL test preformed for breast tumor.

Results: Tumor size and weight significantly decreased in DOX, pretreatment CBD + DOX and CBD + DOX groups. Administration of CBD with DOX could not prevent weight loss. TUNEL test demonstrated the highest tumor cell apoptosis in pretreatment CBD + DOX and CBD + DOX. In lungs belonged to CBD + DOX, there was not any sign of metastasis. Cardiac histopathological examination of pretreatment CBD + DOX and CBD + DOX did not show any sign of congestion or inflammation. In CBD + DOX SOD2 increased, also iNOS, MMP2, and MMP9 decreased compared to DOX.

Conclusions: This study demonstrated that simultaneous administration of CBD and DOX can increase antitumoral effect and reduce DOX cardiotoxicity. Nevertheless, CBD can induce cardiotoxicity as administrated alone.”

https://pubmed.ncbi.nlm.nih.gov/39503169/

“This study demonstrated the potent efficacy of cannabidiol in mouse breast cancer model with high-dose chemotherapy on the antitumor, anti-metastasis and cardioprotective roles against doxorubicin. Simultaneous administration of cannabidiol with high-dose doxorubicin not only improved the antitumor and anti-metastasis efficacy, but also could reduce cardiotoxicity by decreasing MMP2 and MMP9 and improving cardiac function by decreasing iNOS. Furthermore, cannabidiol could improve antioxidant system by increasing SOD2. Eventually, these findings demonstrated cannabidiol as a potential effective agent in coadministration with doxorubicin at the same time in improving anticancer effects and reducing cardiotoxicity.”

https://onlinelibrary.wiley.com/doi/10.1002/cam4.70395