“Cannabidiol (CBD) represents a promising therapeutic tool for treating cannabis use disorder (CUD). This study aimed to evaluate the effects of CBD on the behavioural and gene expression alterations induced by spontaneous cannabinoid withdrawal.
Monthly Archives: April 2018
Suppression of Cisplatin-Induced Vomiting by Cannabis sativa in Pigeons: Neurochemical Evidences.
“Cannabis sativa (CS, family Cannabinaceae) has been reported for its anti-emetic activity against cancer chemotherapy-induced emesis in animal models and in clinics. The current study was designed to investigate CS for potential effectiveness to attenuate cisplatin-induced vomiting in healthy pigeons and to study the impact on neurotransmitters involved centrally and peripherally in the act of vomiting.
High-performance liquid chromatography system coupled with electrochemical detector was used for the quantification of neurotransmitters 5-hydroxytryptamine (5HT), dopamine (DA) and their metabolites; Di-hydroxy Phenyl Acetic acid (Dopac), Homovanillic acid (HVA), and 5-hydroxy indole acetic acid (5HIAA) centrally in specific brain areas (area postrema and brain stem) while, peripherally in small intestine. Cisplatin (7 mg/kg i.v.) induce emesis without lethality across the 24 h observation period.
CS hexane fraction (CS-HexFr; 10 mg/kg) attenuated cisplatin-induced emesis ∼ 65.85% (P < 0.05); the reference anti-emetic drug, metoclopramide (MCP; 30 mg/kg), produced ∼43.90% reduction (P < 0.05). At acute time point (3rd h), CS-HexFr decreased (P < 0.001) the concentration of 5HT and 5HIAA in the area postrema, brain stem and intestine, while at 18th h (delayed time point) CS-HexFr attenuated (P < 0.001) the upsurge of 5HT caused by cisplatin in the brain stem and intestine and dopamine in the area postrema. CS-HexFr treatment alone did not alter the basal neurotransmitters and their metabolites in the brain areas and intestine except 5HIAA and HVA, which were decreased significantly.
In conclusion the anti-emetic effect of CS-HexFr is mediated by anti-serotonergic and anti-dopaminergic components in a blended manner at the two different time points, i.e., 3rd and 18th h in pigeons.”
Endocannabinoid System and Migraine Pain: An Update.
“The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS.
Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache.
Clinical observations, in particular, show that the levels of anandamide (AEA)-one of the two primary endocannabinoid lipids-are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord.
AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors.
Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.”
https://www.ncbi.nlm.nih.gov/pubmed/29615860
https://www.frontiersin.org/articles/10.3389/fnins.2018.00172/full

“Chronic cannabis use has been associated with impaired cognition and elevated psychological symptoms, particularly psychotic-like experiences. While Δ9-tetrahydrocannabinol (THC) is thought to be primarily responsible for these deleterious effects, cannabidiol (CBD) is purported to have antipsychotic properties and to ameliorate cognitive, symptomatic, and brain harms in cannabis users. However, this has never been tested in a prolonged administration trial in otherwise healthy cannabis users. Here, we report the first study of prolonged CBD administration to a community sample of regular cannabis users in a pragmatic trial investigating potential restorative effects of CBD on psychological symptoms and cognition.
Results: CBD was well tolerated with no reported side effects; however, participants retrospectively reported reduced euphoria when smoking cannabis. No impairments to cognition were found, nor were there deleterious effects on psychological function. Importantly, participants reported significantly fewer depressive and psychotic-like symptoms at PT relative to BL, and exhibited improvements in attentional switching, verbal learning, and memory. Increased plasma CBD concentrations were associated with improvements in attentional control and beneficial changes in psychological symptoms. Greater benefits were observed in dependent than in nondependent cannabis users.
Conclusions:Prolonged CBD treatment appears to have promising therapeutic effects for improving psychological symptoms and cognition in regular cannabis users. Our findings require replication given the lack of a placebo control in this pragmatic trial, but suggest that CBD may be a useful adjunct treatment for cannabis dependence.”