[Cardiac and vascular effects of cannabinoids: toward a therapeutic use?].

“Interest in cannabinoid pharmacology developed rapidly since the discovery of cannabinoids receptors and endocannabinoids. Modulation of this system is becoming a hot topic in cardiovascular pharmacology mainly at the light of recent findings.

Among them, cardiac effects of cannabinoids were described with respect to their probable participation to the well-studied preconditioning phenomenon.

Beneficial effects of post-infarction cannabinoids administration against ischemia-reperfusion injury were also reported.

Finally, pathological situations concerning the cardiovascular system and including brain ischemia, hemorrhagic and endotoxic shocks were reported to be linked with endocannabinoids.

However, the clinical use of cannabinoid receptors agonists or antagonists will depend on the development of non psychoactive compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/15828464

Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes.

“Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids.

Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries.

In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.”

http://www.ncbi.nlm.nih.gov/pubmed/24979612

The endocannabinoid-CB2 receptor axis protects the ischemic heart at the early stage of cardiomyopathy.

“Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure.

Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction.

… the endocannabinoid-CB2 receptor axis plays a key role in cardioprotection during the initial phase of ischemic cardiomyopathy development.”

http://www.ncbi.nlm.nih.gov/pubmed/24980781

Role of cyclic nucleotides and NO synthase in mechanisms of cardioprotective effects of cannabinoid HU-210.

“The cardioprotective effect of HU-210 remained unchanged under condition of NO synthase inhibition.

The results of the experiment suggest that the cardioprotective effect of HU-210 can be determined by a decrease in cAMP level in the myocardium during reperfusion. cGMP and NO synthase do not contribute to cytoprotective effect of HU-210.”

Signaling Pathways Involved in the Cardioprotective Effects of Cannabinoids

jphs

“The aim of the present article is to review the cardioprotective properties of cannabinoids, with an emphasis on the signaling pathways involved.

Cannabinoids have been reported to protect against ischemia in rat isolated hearts, as well as in rats and mice in vivo.

Finally, although nitric oxide (NO) was shown to exert both pro and anti-apoptotic effects on cardiomyocytes, with an apparently controversial effect on myocardial survival, our data suggest that NO may contribute to the cardioprotective effect of some cannabinoids.”

“Signaling pathways involved in the cardioprotective effects of cannabinoids.”  http://www.ncbi.nlm.nih.gov/pubmed/17031075

https://www.jstage.jst.go.jp/article/jphs/102/2/102_2_155/_article

6B.09: EFFECT OF CANNABINOID RECEPTOR ACTIVATION ON ABERRANT MITOCHONDRIAL BIOENERGETICS IN HYPERTROPHIED CARDIAC MYOCYTES.

“We recently reported that activation of endocannabinoid receptors attenuates cardiac myocyte hypertrophy. Mitochondrial dysfunction has emerged as a critical determinant of aberrant myocyte energy production in cardiac hypertrophy. Thus, we determined endocannabinoid influence on mitochondrial function in the hypertrophied cardiac myocyte…

The cardioprotective actions of liganded cannabinoid receptors extend to the mitochondrial level. Therefore, a cannabinoid-based treatment for cardiac disease remains a potential therapeutic strategy that warrants further study.”

http://www.ncbi.nlm.nih.gov/pubmed/26102932

CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia.

“Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy.

Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling…

CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts.

Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy.”

Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation.

“The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown.

CONCLUSION:

This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent.”

http://www.ncbi.nlm.nih.gov/pubmed/26092099

Bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids in anaesthetized rats: role of the paraventricular nucleus.

“The activation of cannabinoid CB1 receptors decreases and increases blood pressure (BP) in anaesthetized and conscious rats, respectively. The aim of our study was to check the possible involvement of CB1 receptors in the paraventricular nucleus of the hypothalamus (PVN) in the cardiovascular effects of cannabinoids in rats.

In conclusion, the cannabinoid CP55940 administered to the PVN of urethane-anaesthetized rats can induce depressor and pressor effects. The direction of the response probably depends on the sympathetic tone. The centrally induced hypertensive response of CP55940 can, in addition, be masked by peripheral CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/26084216

Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology.

“Cannabidiol (CBD) has anti-inflammatory effects.

We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform…

Compared to controls, CBD treatment improved systolic wall thickening, significantly increased blood flow in the AAR, significantly decreased microvascular obstruction, increased the PDR by 1.7-fold, lowered the AMI-core/AAR ratio, and increased the MSI.

These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis.

Thus, CBD therapy reduced AMI size and facilitated restoration of LV function.

We demonstrated that this experimental platform has potential theragnostic utility.”

http://www.ncbi.nlm.nih.gov/pubmed/26065843