Efficacy of Cannabis-Based Medicines for Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

“The management of chronic pain is a complex challenge worldwide. Cannabis-based medicines (CBMs) have proven to be efficient in reducing chronic pain, although the topic remains highly controversial in this field.

OBJECTIVES:

This study’s aim is to conduct a conclusive review and meta-analysis, which incorporates all randomized controlled trials (RCTs) in order to update clinicians’ and researchers’ knowledge regarding the efficacy and adverse events (AEs) of CBMs for chronic and postoperative pain treatment.

CONCLUSIONS:

The current systematic review suggests that CBMs might be effective for chronic pain treatment, based on limited evidence, primarily for neuropathic pain (NP) patients. Additionally, GI AEs occurred more frequently when CBMs were administered via oral/oromucosal routes than by inhalation.” https://www.ncbi.nlm.nih.gov/pubmed/28934780]]>

Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis.

“Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a non-euphoria producing constituent of cannabis that has the potential to relieve pain. The aim of this study was to determine if CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy. The therapeutic and prophylactic effects of peripheral CBD (100-300μg) were assessed. In end stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (p<0.0001; n=8). Acute, transient joint inflammation was reduced by local CBD treatment (p<0.0001; n=6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (p<0.0001; n=8), and was also found to be neuroprotective (p<0.05; n=6-8). The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints. These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain.” https://www.ncbi.nlm.nih.gov/pubmed/28885454             https://insights.ovid.com/crossref?an=00006396-900000000-99152]]>

The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain.

“A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (ie, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics. Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models. Emerging clinical studies show that ‘medicinal’ cannabis or cannabinoid-based medications relieve pain in human diseases, such as cancer, multiple sclerosis, and fibromyalgia. Here, we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28857069 https://www.nature.com/npp/journal/vaop/naam/abs/npp2017204a.html]]>

Endocannabinoids Have Opposing Effects On Behavioral Responses To Nociceptive And Non-nociceptive Stimuli.

“The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain. However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo. These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.”
]]>