Joint problems arising from lack of repair mechanisms: can cannabinoids help?

“Osteoarthritis (OA) is the most common disease of joints, which are complex organs where cartilage, bone and synovium cooperate to allow the range of movements. During the disease progression, the function of all three main components is jeopardized. Nevertheless, the involvement of each tissue in OA development is still not established and is the topic of the present review. The available OA therapies are symptomatic, largely targeting pain management rather than disease progression. The strong need to develop a treatment for cartilage degeneration, bone deformation and synovial inflammation has led to research on the involvement of the endocannabinoid system in the development of OA. The current review discusses the research on this topic to date and notes the advantages of exploiting endocannabinoid system modulation for cartilage, bone and synovium homeostasis, which could prevent the further progression of OA.” https://www.ncbi.nlm.nih.gov/pubmed/29574720 https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14204

“We provide experimental evidence to show that activation of the cannabinoid system enhances the survival, migration and chondrogenic differentiation of MSCs, which are three major tenets behind the success of a cell-based tissue-engineered cartilage repair strategy. These findings highlight the potential for cannabinoids to provide a dual function by acting as anti-inflammatory agents as well as regulators of MSC biology in order to enhance tissue engineering strategies aimed at cartilage repair.”
]]>

Plasma anandamide concentrations are lower in children with autism spectrum disorder.

Molecular Autism logo “Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restricted, stereotyped behaviors and impairments in social communication. Although the underlying biological mechanisms of ASD remain poorly understood, recent preclinical research has implicated the endogenous cannabinoid (or endocannabinoid), anandamide, as a significant neuromodulator in rodent models of ASD. Despite this promising preclinical evidence, no clinical studies to date have tested whether endocannabinoids are dysregulated in individuals with ASD. Here, we addressed this critical gap in knowledge by optimizing liquid chromatography-tandem mass spectrometry methodology to quantitatively analyze anandamide concentrations in banked blood samples collected from a cohort of children with and without ASD (N = 112).

FINDINGS:

Anandamide concentrations significantly differentiated ASD cases (N = 59) from controls (N = 53), such that children with lower anandamide concentrations were more likely to have ASD (p = 0.041). In keeping with this notion, anandamide concentrations were also significantly lower in ASD compared to control children (p = 0.034).

CONCLUSIONS:

These findings are the first empirical human data to translate preclinical rodent findings to confirm a link between plasma anandamide concentrations in children with ASD. Although preliminary, these data suggest that impaired anandamide signaling may be involved in the pathophysiology of ASD.” https://www.ncbi.nlm.nih.gov/pubmed/29564080 https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0203-y
]]>