From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

Image result for Physiol Rev.

“Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS).

This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs.

In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.”

http://www.ncbi.nlm.nih.gov/pubmed/27630175

The syntheses of isotopically labelled CB-1 antagonists for the treatment of obesity.

Image result for J Labelled Comp Radiopharm

“BMS-725519, BMS-811064, and BMS-812204 are potent and selective central cannabinoid receptor antagonists that have been investigated for the treatment of human obesity. To further understand their biotransformation profiles, radiolabelled and stable-labelled products were required. This paper describes the utility of [14 C]1,1-carbonyldiimidazole as a radiolabelling reagent for the syntheses of carbonyl-labelled [14 C]BMS-725519, [14 C]BMS-811064, and [14 C]BMS-812204. The syntheses of stable-labelled [13 C6 ]BMS-725519 and [13 CD3 13 CD2 ]BMS-812204 synthesized from of [13 C6 ]4-chloroacetophenone and [13 CD3 13 CD2 ]iodoethane, respectively, are also described.”

http://www.ncbi.nlm.nih.gov/pubmed/27624665

Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish.

Image result for FASEB J.

“The developmental role of the endocannabinoid system still remains to be fully understood.

Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth.

By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception.

Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.”

http://www.ncbi.nlm.nih.gov/pubmed/27623930

Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.

Image result for FASEB J.

“Cannabinoids modulate intestinal permeability through CB1.

The endocannabinoid-like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an important role in digestive regulation, and we hypothesized they would also modulate intestinal permeability.

OEA and PEA have endogenous roles and potential therapeutic applications in conditions of intestinal hyperpermeability and inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/27623929

Don’t Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward.

Image result for annual review of pharmacology and toxicology

“Cannabis enables and enhances the subjective sense of well-being by stimulating the endocannabinoid system (ECS), which plays a key role in modulating the response to stress, reward, and their interactions.

The recent shift toward legalization of medical or recreational cannabis has renewed interest in investigating the physiological role of the ECS as well as the potential health effects, both adverse and beneficial, of cannabis.

Here we review our current understanding of the ECS and its complex physiological roles.

We discuss the implications of this understanding vis-á-vis the ECS’s modulation of stress and reward and its relevance to mental disorders in which these processes are disrupted (i.e., addiction, depression, posttraumatic stress disorder, schizophrenia), along with the therapeutic potential of strategies to manipulate the ECS for these conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/27618739

Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice.

Image result for Cell Physiol Biochem

“Myocardial interstitial fibrosis is a major histologic landmark resulting in cardiac dysfunction after myocardial infarction (MI).

Activation of cannabinoid receptor type II (CB2 receptor) have been demonstrated to reduce fibrosis in hepatic cirrhotic rat.

In this study, we aimed to investigate the effects of a CB2 receptor selective agonist AM1241 on myocardial fibrosis post MI in mice.

CONCLUSION:

CB2 receptor agonist AM1241 alleviated myocardial interstitial fibrosis via Nrf2 -mediated down-regulation of TGF-β1/Smad3 pathway, which suggested that CB2 receptor activation might represent a promising target for retarding cardiac fibrosis after MI.”

http://www.ncbi.nlm.nih.gov/pubmed/27614871

Spontaneous involution of pediatric low-grade gliomas: high expression of cannabinoid receptor 1 (CNR1) at the time of diagnosis may indicate involvement of the endocannabinoid system.

Image result for Childs Nerv Syst

“Pediatric low-grade gliomas (P-LGG) consist of a mixed group of brain tumors that correspond to the majority of CNS tumors in children.

Notably, they may exhibit spontaneous involution after subtotal surgical removal (STR). In this study, we investigated molecular indicators of spontaneous involution in P-LGG.

CONCLUSIONS:

The P-LGG, which remained stable or that presented spontaneous involution after STR, showed significantly higher CNR1 expression at the time of diagnosis.

We hypothesize that high expression levels of CNR1 provide tumor susceptibility to the antitumor effects of circulating endocannabinoids like anandamide, resulting in tumor involution.

This corroborates with reports suggesting that CNR1 agonists and activators of the endocannabinoid system may represent therapeutic opportunities for children with LGG.

We also suggest that CNR1 may be a prognostic marker for P-LGG.

This is the first time spontaneous involution of P-LGG has been suggested to be induced by endocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/27613640

Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

Image result for plos one logo

“Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear.

In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome.

We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.”

http://www.ncbi.nlm.nih.gov/pubmed/27611972

Spontaneous Cannabinoid Receptor 2 (CB2) Expression in the Cochlea of Adult Albino Rat and Its Up-Regulation after Cisplatin Treatment

Image result for plos one

“We provide evidence for the presence of cannabinoid CB2 receptors in some cellular types of the cochlea of the adult albino rat. Cannabinoids and their receptors are increasingly being studied because of their high potential for clinical use. As a hyperspecialized portion of the peripheral nervous system, study of the expression and function of cannabinoid receptors in the hearing organ is of high interest. Stria vascularis and inner hair cells express CB2 receptor, as well as neurites and cell bodies of the spiral ganglion. Cellular types such as supporting cells and outer hair cells, in which the expression of other types of functional receptors has been reported, do not significantly express CB2 receptors in this study. An up-regulation of CB2 gene expression was detected after an ototoxic event such as cisplatin treatment, probably due to pro-inflammatory events triggered by the drug. That fact suggests promising potential of CB2receptor as a therapeutic target for new treatments to palliate cisplatin-induced hearing loss and other ototoxic events which triggers inflammatory pathways.”  http://www.ncbi.nlm.nih.gov/pubmed/27564061

“In conclusion, evidence for the presence of cannabinoid CB2 receptor by immunohystochemistry and by RT-qPCR was provided. An immunolabeling of CB2 antibodies in four structures of the adult rat cochlea was found. That was, stria vascularis, inner hair cells, auditory afferent nerves and cell bodies of the spiral ganglion. Up-regulation of CB2 gene expression in animals exposed to CDDP treatment was also detected, when compared with healthy animals. This fact was partially supported by the higher immunofluorescence observed in the stria vascularis of CDDP-treated animals if compared with the healthy ones. These results suggest a considerable promising potential of CB2 receptor as a target of new treatments against CDDP-induced ototoxicity, and probably against other inflammatory diseases in the inner ear. Further research is needed to determine the functionality of CB2receptors in the organ of Corti and the potential therapeutic role of agonists and antagonists of these receptors.”  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161954

“Study: Cannabinoids a Potential Treatment Option for Chemotherapy-Induced Hearing Loss” http://www.theweedblog.com/study-cannabinoids-potential-treatment-option-chemotherapy-induced-hearing-loss/

Modulation of Long-Term Potentiation of Cortico-Amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid.

Image result for Front Behav Neurosci

“Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA) in the brain is involved in mental illnesses such as anxiety disorders.

We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory.

In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala (BLA).

These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor-dependent manner.”