Combined neuroprotective action of adenosine A1 and cannabinoid CB1 receptors against NMDA-induced excitotoxicity in the hippocampus.

“Both adenosine A1 and cannabinoid CB1 receptors trigger similar transduction pathways and protect against neurotoxic insults at the hippocampus, but their combined neuroprotective potential has not been investigated.

We set forth to assess the combined action of A1 and CB1 receptors against glutamate NMDA receptor-mediated excitotoxicity at the hippocampus…

The results suggest that both CB1 and A1 receptors produce additive cumulative neuroprotection against NMDA-induced excitotoxicity in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/26065937

New horizons for newborn brain protection: enhancing endogenous neuroprotection.

“Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE).

The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised.

Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear.

It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.

There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE.

In this review, we focus on strategies that can augment the body’s own endogenous neuroprotection.

We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult.

Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential.

Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.”

http://www.ncbi.nlm.nih.gov/pubmed/26063194

[Over-expression of cannabinoid receptor 2 induces the apoptosis of cervical carcinoma Caski cells].

“Objective: To construct a eukaryotic expression vector containing human cannabinoid receptor 2 (hCB2R) gene and investigate its expression, location and the influence on the apoptosis of cervical cancer Caski cells.

Conclusion: The up-regulated expression of hCB2R could induce cell apoptosis by enhancing the expressions of Bax, Bad and suppressing the expression of Bcl-2 in Caski cells.”

http://www.ncbi.nlm.nih.gov/pubmed/26062417

http://www.thctotalhealthcare.com/category/cervical-cancer/

Medical Marijuana in Pediatric Neurological Disorders.

“Marijuana and marijuana-based products have been used to treat medical disease.

Recently, derivatives of the plant have been separated or synthesized to treat various neurological disorders, many of them affecting children.

Unfortunately, data are sparse in regard to treating children with neurologic illness. Therefore, formal conclusions about the potential efficacy, benefit, and adverse effects for these products cannot be made at this time.

Further robust research using strong scientific methodology is desperately needed to formally evaluate the role of these products in children.”

http://www.ncbi.nlm.nih.gov/pubmed/26060306

“The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.”  http://www.ncbi.nlm.nih.gov/pubmed/15159678

Localization of an endocannabinoid system in the hypophysial pars tuberalis and pars distalis of man.

“The hypophysial pars tuberalis (PT) acts as an important interface between neuroendocrine brain centers (hypothalamus, pineal organ) and the pars distalis (PD) of the hypophysis.

Recently, we have identified an endocannabinoid system in the PT of hamsters and provided evidence that 2-arachidonoylglycerol is a messenger molecule that appears to play an essential role in seasonal reproduction and prolactin release by acting on the cannabinoid receptors in the PD.”

“An endocannabinoid system is localized to the hypophysial pars tuberalis of Syrian hamsters and responds to photoperiodic changes.”  http://www.ncbi.nlm.nih.gov/pubmed/20165884

“We now demonstrate the enzymes involved in endocannabinoid synthesis and degradation, namely sn-1-selective diacylglycerol lipase α, N-acylphosphatidylethanolamine-specific phospholipase D, and monoacylglycerol lipase, in the PT of man by means of immunohistochemistry.

High-performance liquid chromatography coupled with tandem mass spectrometry revealed 2-arachidonoylglycerol and other endocannabinoids in the human PT.

Furthermore, we detected the expression of the cannabinoid receptor 1 (CB1), a primary receptor for endocannabinoids, in the PD.

Our data thus indicate that the human PT comprises an endocannabinoid system, and that corticotrophs and FS-cells are the main target cells for endocannabinoids.

The functional significance of this newly discovered pathway remains to be elucidated in man; it might be related to the control of stress responses and/or reflect a remnant seasonal control of hypophysial hormonal secretion.”

http://www.ncbi.nlm.nih.gov/pubmed/20957495

The rat pineal gland comprises an endocannabinoid system.

“In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis.

A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland…

In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.”

http://www.ncbi.nlm.nih.gov/pubmed/18554250

Rhythmic control of endocannabinoids in the rat pineal gland.

“Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors.

The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors.

Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness.

Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands.

These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal.

Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.”

http://www.ncbi.nlm.nih.gov/pubmed/26061461

Effects of cannabinoids and their receptors on viral infections.

“Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis.

There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication.

The present study reviews current insights into the role of cannabinoids and their receptors on viral infections.

The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection.

Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.”

Involvement of cannabinoid receptors in infrasonic noise-induced neuronal impairment.

“Excessive exposure to infrasound, a kind of low-frequency but high-intensity sound noise generated by heavy transportations and machineries, can cause vibroacoustic disease which is a progressive and systemic disease, and finally results in the dysfunction of central nervous system.

Our previous studies have demonstrated that glial cell-mediated inflammation may contribute to infrasound-induced neuronal impairment, but the underlying mechanisms are not fully understood.

Here, we show that cannabinoid (CB) receptors may be involved in infrasound-induced neuronal injury.

…our results provide the first evidence that CB receptors may be involved in infrasound-induced neuronal impairment possibly by affecting the release of proinflammatory cytokines.”

http://www.ncbi.nlm.nih.gov/pubmed/26058582

The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough.

“Cannabis has been demonstrated to have bronchodilator, anti-inflammatory, and antitussive activity in the airways…

We compared the effects of Δ(9)-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid, and tetrahydrocannabivarin on contractions of the guinea pig-isolated trachea and bronchoconstriction induced by nerve stimulation or methacholine in anesthetized guinea pigs following exposure to saline or the proinflammatory cytokine, tumor necrosis factor α (TNF-α)…

Only Δ(9)-tetrahydrocannabinol inhibited TNF-α-enhanced vagal-induced bronchoconstriction, neutrophil recruitment to the airways, and citric acid-induced cough responses…

The other cannabinoids did not influence cholinergic transmission, and only Δ(9)-THC demonstrated effects on airway hyper-responsiveness, anti-inflammatory activity, and antitussive activity in the airways.”

http://www.ncbi.nlm.nih.gov/pubmed/25655949