“Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.” https://link.springer.com/article/10.1007/s00018-018-2834-8 http://www.x-mol.com/paper/661834]]>
Category Archives: Lennox-Gastaut
Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents – An observational, longitudinal study.
“The objective of this observational study was to evaluate the efficacy of medical cannabis for the treatment of refractory epilepsy.
Fifty-seven patients (age 1-20 years) with epilepsy of various etiologies were treated with Cannabis oil extract (CBD/THC ratio of 20:1) for at least 3 months (Median follow up time-18 months). Forty-Six Patients were included in the efficacy analysis. Average CBD dose was11.4 mg/kg/d.
Twenty-six patients (56%) had ≤50% reduction in mean monthly seizure frequency. There was no statistically significant difference in response rate among various epilepsy etiologies, and cannabis strain used.
Younger age at treatment onset (<10 years) and higher CBD dose (>11 mg/kg/d) were associated with better response to treatment. Adverse reactions were reported in 46% of patients and were the main reason for treatment cessation.
Our results suggest that adding CBD-enriched cannabis extract to the treatment regimen of patients with refractory epilepsy may result in a significant reduction in seizure frequency according to parental reports.”
Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy.
“Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use.
Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy.
Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties.
Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant.
In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA).
Here, we demonstrate that subchronic administration of PEA significantly alleviates seizure intensity, promotes neuroprotection and induces modulation of the plasma and hippocampal eCB and eiC levels in systemic KA-injected mice.”
https://www.ncbi.nlm.nih.gov/pubmed/29593494
https://www.frontiersin.org/articles/10.3389/fnmol.2018.00067/full
“Cannabidivarin (CBDV) and cannabidiol (CBD) have recently emerged among
“2-Arachidonoylglycerol (2-AG) and anandamide are two major