Category Archives: Multiple Sclerosis (MS)
Exploring cannabis use by patients with multiple sclerosis in a state where cannabis is legal.
“Studies suggest cannabis may improve symptoms like pain and muscle spasticity in patients with multiple sclerosis (PwMS). As cannabis legalization has impacted the variety of cannabis products available, there appears to be growing numbers of PwMS using cannabis, with this study’s Cannabis users (CUs) reporting use of highly efficacious products with minimal side-effects.” https://www.ncbi.nlm.nih.gov/pubmed/30502644 https://www.msard-journal.com/article/S2211-0348(18)30515-7/fulltext]]>
Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells.
“Neuroinflammation plays a vital role in Alzheimer’s disease and other neurodegenerative conditions. The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia.
Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer’s disease, Parkinson, and multiple sclerosis (MS).”
https://www.ncbi.nlm.nih.gov/pubmed/30453998 https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1362-7 “Pharmacological characterization of GPR55, a putative cannabinoid receptor.” https://www.ncbi.nlm.nih.gov/pubmed/20298715 “Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/]]>The Endocannabinoid System and Oligodendrocytes in Health and Disease.
“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.”
https://www.ncbi.nlm.nih.gov/pubmed/30416422
https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full
Assessment of Efficacy and Tolerability of Medicinal Cannabinoids in Patients With Multiple Sclerosis: A Systematic Review and Meta-analysis
“Are medicinal cannabinoids effective and well tolerated in the treatment of multiple sclerosis? Findings In this systematic review and meta-analysis of 17 randomized clinical trials including 3161 patients, cannabinoids were significantly associated with efficacy for subjective spasticity, pain, and bladder dysfunction compared with placebo. Cannabinoids had a higher risk of adverse events and withdrawals due to adverse events, with no statistically significant differences found for serious adverse events. Meaning Cannabinoids appear to be safe regarding serious adverse events, but their clinical benefit may be limited. Cannabinoids have antispastic and analgesic effects. The results suggest a limited efficacy of cannabinoids for the treatment of spasticity, pain, and bladder dysfunction in patients with MS. Therapy using these drugs can be considered as safe.” https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2706499
“MEDICAL MARIJUANA USES: CANNABIS MAY EASE SYMPTOMS OF MULTIPLE SCLEROSIS” https://www.newsweek.com/medical-marijuana-may-ease-symptoms-multiple-sclerosis-1170416
]]>Avidekel Cannabis extracts and cannabidiol are as efficient as Copaxone in suppressing EAE in SJL/J mice.
“Multiple sclerosis (MS) is an autoimmune disease leading to the destruction of myelin with consequent axonal degeneration and severe physical debilitation. The disease can be treated with immunosuppressive drugs that alleviate the symptoms and retard disease aggravation. One such drug in clinical use is glatiramer acetate (Copaxone).
The non-psychotropic immunosuppressive cannabinoid compound cannabidiol (CBD) has recently been shown to have beneficial effects on experimental autoimmune encephalomyelitis (EAE). The aim of our study was to compare the efficacy of CBD and standardized extracts from a CBD-rich, ∆9-THClow Cannabis indica subspecies (Avidekel) with that of Copaxone.
Our data show that CBD and purified Avidekel extracts are as efficient as Copaxone to alleviate the symptoms of proteolipid protein (PLP)-induced EAE in SJL/J mice. No synergistic effect was observed by combining CBD or Avidekel extracts with Copaxone.
Our data support the use of Avidekel extracts in the treatment of MS symptoms.”
https://www.ncbi.nlm.nih.gov/pubmed/30291491
https://link.springer.com/article/10.1007%2Fs10787-018-0536-3
“Multiple sclerosis (MS) is a complex disease with a heterogeneous and unpredictable clinical course. Mobility impairment after progressive paralyses and muscle tone spasticity is common.
Areas covered: The prevalence, assessment, and pharmacological management of gait impairment and spasticity in MS and their effects on health-related quality of life (HRQoL) are discussed.
The roles of oral and intrathecal baclofen and of delta-9-tetrahydrocannabinol/
“The gut microbiota plays a fundamental role on the education and function of the host immune system.
Immunological dysregulation is the cause of numerous human disorders such as autoimmune diseases and metabolic disorders frequently associated with inflammatory processes therefore is critical to explore novel mechanisms involved in maintaining the immune system homeostasis.
The
“Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of