Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial.

The Lancet Neurology

“Spasticity is a major determinant of disability and decline in quality of life in patients with motor neuron disease.

Cannabinoids have been approved for symptomatic treatment of spasticity in multiple sclerosis. We investigated whether cannabinoids might also reduce spasticity in patients with motor neuron disease.

Nabiximols was well tolerated, and no participants withdrew from the double-blind phase of the study. No serious adverse effects occurred.

INTERPRETATION:

In this proof-of-concept trial, nabiximols had a positive effect on spasticity symptoms in patients with motor neuron disease and had an acceptable safety and tolerability profile.” https://www.ncbi.nlm.nih.gov/pubmed/30554828 https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(18)30406-X/fulltext]]>

Exploring cannabis use by patients with multiple sclerosis in a state where cannabis is legal.

“Studies suggest cannabis may improve symptoms like pain and muscle spasticity in patients with multiple sclerosis (PwMS). As cannabis legalization has impacted the variety of cannabis products available, there appears to be growing numbers of PwMS using cannabis, with this study’s Cannabis users (CUs) reporting use of highly efficacious products with minimal side-effects.” https://www.ncbi.nlm.nih.gov/pubmed/30502644 https://www.msard-journal.com/article/S2211-0348(18)30515-7/fulltext]]>

Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells.

“Neuroinflammation plays a vital role in Alzheimer’s disease and other neurodegenerative conditions. The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia.

Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer’s disease, Parkinson, and multiple sclerosis (MS).”

https://www.ncbi.nlm.nih.gov/pubmed/30453998 https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1362-7 “Pharmacological characterization of GPR55, a putative cannabinoid receptor.”  https://www.ncbi.nlm.nih.gov/pubmed/20298715 “Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/]]>

The Endocannabinoid System and Oligodendrocytes in Health and Disease.

 Image result for frontiers in neuroscience“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.” https://www.ncbi.nlm.nih.gov/pubmed/30416422 https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full
]]>