Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques.

“Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression…

These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation.

IMPORTANCE:

Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection.

Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation.

Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine…

Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.”

http://www.ncbi.nlm.nih.gov/pubmed/25378491

http://www.thctotalhealthcare.com/category/hivaids/

Biomedical benefits of cannabinoids?

“Cannabinoids appear to be of therapeutic value as antiemetics, antispasmodics, analgesics and appetite stimulants and may have potential uses in epilepsy, glaucoma and asthma.

This paper reviews the clinical trials which have been carried out with cannabinoids including Δ⁹-tetrahydrocannabinol (THC) and synthetic cannabinoids such as nabilone and levonantradol, and discusses the advantages and adverse effects of cannabinoids in clinical use.

The place of cannabinoids in modern medicine remains to be properly evaluated, but present evidence suggests that they could be valuable, particularly as adjuvants, for symptom control in a range of conditions for which standard drugs are not fully satisfactory.”

The endogenous cardiac cannabinoid system: a new protective mechanism against myocardial ischemia.

“The pharmacological (and recreational) effects of cannabis have been known for centuries. However, it is only recently that one has identified two subtypes of G-protein-coupled receptors, namely CB1 and CB2-receptors, which mediate the numerous effects of delta9-tetrahydrocannabinol and other cannabinoids.

Logically, the existence of cannabinoid-receptors implies that endogenous ligands for these receptors (endocannabinoids) exist and exert a physiological role. Hence, arachidonoylethanolamide (anandamide) and sn-2 arachidonoylglycerol, the first two endocannabinoids identified, are formed from plasma membrane phospholipids and act as CB1 and/or CB2 agonists.

The presence of both CB1 and CB2-receptors in the rat heart is noteworthy.

This endogenous cardiac cannabinoid system is involved in several phenomena associated with cardioprotective effects.

The reduction in infarct size following myocardial ischemia, observed in rats exposed to either LPS or heat stress 24 hours before, is abolished in the presence of a CB2-receptor antagonist.

Endocannabinoids and synthetic cannabinoids, the latter through either CB1 or CB2-receptors, exert direct cardioprotective effects in rat isolated hearts.

The ability of cannabinoids to reduce infarct size has been confirmed in vivo in anesthetized mice and rats. This latter effect appears to be mediated through CB2-receptors.

Thus, the endogenous cardiac cannabinoid system, through activation of CB2-receptors, appears to be an important mechanism of protection against myocardial ischemia.”

https://pubmed.ncbi.nlm.nih.gov/16618028

An ultra-low dose of tetrahydrocannabinol provides cardioprotection.

“Tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is a cannabinoid agonist that exerts its effects by activating at least two specific receptors (CB1 and CB2) that belong to the seven transmembrane G-protein coupled receptor (GPCR) family.

Both CB1 and CB2 mRNA and proteins are present in the heart.

THC treatment was beneficial against hypoxia in neonatal cardiomyocytes in vitro.

We also observed a neuroprotective effect of an ultra low dose of THC when applied to mice before brain insults.

The present study was aimed to test and characterize the cardioprotective effects of a very low dose of THC…

All protocols of THC administration were found to be beneficial.

CONCLUSION:

A single ultra low dose of THC before ischemia is a safe and effective treatment that reduces myocardial ischemic damage.”

http://www.ncbi.nlm.nih.gov/pubmed/23537701

Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

“Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions…

The present study was designed to investigate the central (CB1) and the peripheral (CB2)cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia.

The antagonist for the CB2, but not CB1 receptor antagonist abolished the protective effect of THC.

In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors.

Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors.

L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC.

Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production.

An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16444588

Cannabinoid pharmacology in the cardiovascular system: potential protective mechanisms through lipid signalling.

“Cannabinoids include not only plant-derived compounds (of which delta9-tetrahydrocannabinol is the primary psychoactive ingredient of cannabis), but also synthetic agents and endogenous substances termed endocannabinoids which include anandamide (2-arachidonoylethanolamide) and 2-arachidonoylglycerol.

Cannabinoids act on specific, G-protein-coupled, receptors which are currently divided into two types, CB1 and CB2. Relatively selective agonists and antagonists for these receptors have been developed, although one agent (SR141716A) widely used as an antagonist at CB1 receptors has non-cannabinoid receptor-mediated effects at concentrations which are often used to define the presence of the CB1 receptor.

Both cannabinoid receptors are primarily coupled to Gi/o proteins and act to inhibit adenylyl cyclase. Stimulation of CB1 receptors also modulates the activity of K+ and Ca2+ channels and of protein kinase pathways including protein kinase B (Akt) which might mediate effects on apoptosis. CB, receptors may activate the extracellular signal-regulated kinase cascade through ceramide signalling.

Cannabinoid actions on the cardiovascular system have been widely interpreted as being mediated by CB1 receptors although there are a growing number of observations, particularly in isolated heart and blood vessel preparations, that suggest that other cannabinoid receptors may exist.

Interestingly, the currently identified cannabinoid receptors appear to be related to a wider family of lipid receptor, those for the lysophospholipids, which are also linked to Gi/o protein signalling.

Anandamide also activates vanilloid VR1 receptors on sensory nerves and releases the vasoactive peptide, calcitonin gene-related peptide (CGRP), which brings about vasodilatation through its action on CGRP receptors.

Current evidence suggests that endocannabinoids have important protective roles in pathophysiological conditions such as shock and myocardial infarction.

Therefore, their cardiovascular effects and the receptors mediating them are the subject of increasing investigative interest.”

http://www.ncbi.nlm.nih.gov/pubmed/15005177

No smoke, no fire: What the initial literature suggests regarding vapourized cannabis and respiratory risk

“Given current limitations in developing an inhalant alternative for delivering cannabis medication, smoked marijuana remains the most readily accessible form of cannabis among medicinal users…

Cannabis actually served as an asthma treatment in the 1800s and, perhaps, in ancient times…

Informed health care professionals may consider making recommendations to their medicinal cannabis patients for vapourization of the plant, particularly for those who want the rapid relief that oral administration fails to provide.

It is not our intention to encourage inappropriate use of the plant, but to increase safety for those who choose to use it.

Vapourization of cannabis is likely less harmful than smoking.

Preliminary findings do support the idea that vapourization is an improvement over smoking.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456813/

Medical use of cannabis: an addiction medicine perspective.

“The use of cannabis for medical purposes, evident throughout history, has become a topic of increasing interest. Yet on the present medical evidence, cannabis-based treatments will only be appropriate for a small number of people in specific circumstances. Experience with cannabis as a recreational drug, and with use of psychoactive drugs that are prescribed and abused, should inform harm reduction in the context of medical cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/26059881

“A safer alternative: Cannabis substitution as harm reduction.”  http://www.ncbi.nlm.nih.gov/pubmed/25919477

Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date.

“While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality.

One would thus expect cannabis use to be associated with dopamine signaling alterations.

This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man…

In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. ”

http://www.ncbi.nlm.nih.gov/pubmed/26068702

The rat pineal gland comprises an endocannabinoid system.

“In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis.

A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland…

In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.”

http://www.ncbi.nlm.nih.gov/pubmed/18554250