“The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ9-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.” https://www.ncbi.nlm.nih.gov/pubmed/28481360 https://www.nature.com/nm/journal/vaop/ncurrent/full/nm.4311.html
Tag Archives: 2-AG
Δ9-Tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors
“It has been suggested that the endocannabinoid system elicits neuroprotection against excitotoxic brain damage. In the present study the therapeutic potential of AM 404 on ischaemia-induced neuronal injury was investigated in vivo and compared with that of the classical cannabinoid receptor type 1 (CB1) agonist, Δ9-tetraydrocannabinol (THC), using a model of transient global cerebral ischaemia in the gerbil. Our findings demonstrate that AM 404 and THC reduce neuronal damage caused by bilateral carotid occlusion in gerbils and that this protection is mediated through an interaction with CB1 and opioid receptors. Endocannabinoids might form the basis for the development of new neuroprotective drugs useful for the treatment of stroke and other neurodegenerative pathologies. There is some evidence from experiments with mice that increasing anandamide or 2-arachidonoyl glycerol content may lead to neuroprotection. Collectively, our data demonstrate that AM 404 and THC protect against neuronal ischaemia-induced injury through a mechanism involving cannabinoid and opioid receptors but not vanilloid receptors.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189998/]]>
Anandamide and 2-AG Are Endogenously Present within the Laterodorsal Tegmental Nucleus: Functional Implications for a role of eCBs in arousal.
“Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological agents, we provided data suggestive of the endogenous presence of cannabinoids (CBs) acting at LDT CB1Rs. However, in those studies, we were unable to identify the type(s) of CB ligands endogenously present in the LDT, and this information has not been provided elsewhere. Accordingly, we used the highly-sensitive liquid chromatography/mass spectrometry (LC-MS) method to determine whether N-arachidonoylethanolamide (Anandamide or AEA) and 2-arachidonyl glycerol (2-AG), which are both endogenous CB ligands acting at CB1Rs, are present in the LDT. Mice brain tissue samples of the LDT were assayed using ion trap LC-MS in selected ion monitoring mode. Chromatographic analysis and product-ion MS scans identified presence of the CBs, AEA and 2-AG, from LDT mouse tissue. Data using the LC-MS method show that AEA and 2-AG are endogenously present within the LDT and when coupled with our electrophysiological findings, lead to the suggestion that AEA and 2-AG act at electropharmacologically-demonstrated CB1Rs in this nucleus. Accordingly, AEA and 2-AG likely play a role in processes governed by the LDT, including control of states of cortical gamma band activity seen in alert, aroused states, as well as cortical and motor activity characteristic of REM sleep.” https://www.ncbi.nlm.nih.gov/pubmed/28404451]]>
Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.
“Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.”
https://www.ncbi.nlm.nih.gov/pubmed/28380440
Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.
“Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy.” https://www.ncbi.nlm.nih.gov/pubmed/28373843]]>
Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS.
“Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system with limited therapeutic options. While an increasing number of ALS patients can be linked to a small number of autosomal-dominantly inherited cases, most cases are termed sporadic. Both forms are clinically and histopathologically indistinguishable, raising the prospect that they share key pathogenic steps, including potential therapeutic intervention points. The endocannabinoid system is emerging as a versatile, druggable therapeutic target in the CNS and its dysregulation is an early hallmark of neurodegeneration. Whether this is a defense mechanism or part of the pathogenesis remains to be determined. The neuroprotective and anti-inflammatory endocannabinoid 2-arachidonoylglycerol (2-AG), which is degraded by monoacylglycerol lipase (MAGL), accumulates in the spinal cords of transgenic models of ALS. We tested the hypothesis that this 2-AG increase is a protective response in the low-copy SOD1G93A mouse model of ALS. We show that oral application of the MAGL inhibitor KML29 delays disease onset, progression and survival. Furthermore, we could demonstrate that KML29 reduced proinflammatory cytokines and increased brain-derived neurotrophic factor (BDNF) expression levels in the spinal cord, the major site of neurodegeneration in ALS. Moreover, treatment of primary mouse neurons and primary mousecroglia with 2-AG confirmed the neuroprotective and anti-inflammatory action by increasing BDNF and arginase-1 and decreasing proinflammatory cytokines in vitro. In summary, we show that elevating 2-AG levels by MAGL inhibition is a therapeutic target in ALS and demonstrate that the endocannabinoid defense mechanisms can be exploited therapeutically in neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/28373073]]>
Activation of CB1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries.
“Recent evidence suggests that endocannabinoids acting via cannabinoid CB1 receptors may modulate vascular responses of various vasoconstrictors in the rodent systemic vasculature. The aim of the study was to investigate whether endocannabinoids modulate the contractile responses evoked by a thromboxane A2 analog (U46619), angiotensin II (Ang II), serotonin (5-HT) and phenylephrine which stimulate distinct Gq/11-protein coupled receptors (TP, AT1, 5-HT2 and α1-adrenergic) in isolated endothelium-intact human (hPAs) and rat pulmonary arteries (rPAs). The present study shows the protective interaction between the endocannabinoid system and vasoconstriction to U46619 and Ang II in the human and rat pulmonary circulation. U46619 and Ang II may stimulate rapid endothelial release of endocannabinoids (mainly 2-arachidonoylglycerol), leading to CB1 receptor-dependent and/or -independent vasorelaxation, which in the negative feedback mechanism reduces later agonists-induced vasoconstriction.” https://www.ncbi.nlm.nih.gov/pubmed/28356298 http://ajpregu.physiology.org/content/early/2017/03/27/ajpregu.00324.2016]]>
Anticancer effects of anandamide on head and neck squamous cell carcinoma cells via the production of receptor-independent reactive oxygen species.
“The endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are considered promising potential anticancer agents. In this study, we examined the anticancer effects of AEA and 2-AG in head and neck squamous cell carcinoma (HNSCC) cell lines. Our results showed that AEA effectively inhibited proliferation of HNSCC cells whereas 2-AG did not. The anticancer effect of AEA seemed to be mediated by a receptor-independent mechanism. Inhibitors of AEA intracellular transportation and transfection of HNSCC cells with fatty acid amide hydrolase, a key enzyme in AEA metabolism, reversed AEA-dependent inhibition of cell proliferation. We found that cyclooxygenase-2 (COX-2) did not mediate the anticancer effects of AEA; instead we observed an increase in reactive oxygen species (ROS) production after AEA treatment. Moreover, antioxidants partially reversed AEA-dependent inhibition of cell proliferation. These findings suggest that AEA might have anticancer effects on HNSCC cells by mediating an increase in ROS levels through a receptor-independent mechanism.” https://www.ncbi.nlm.nih.gov/pubmed/24797795 http://onlinelibrary.wiley.com/doi/10.1002/hed.23727/abstract]]>
Endocannabinoid signalling modulates susceptibility to traumatic stress exposure.
“Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.” https://www.ncbi.nlm.nih.gov/pubmed/28348378