Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

“Acute pancreatitis is an inflammatory disease, which has several causes and symptoms and requires immediate medical attention. The cannabinoid receptor type 2 (CB2R) is a G protein-coupled receptor that, in humans, is encoded by the CNR2 gene. CB2Rs are predominantly expressed in the periphery, especially in immune cells, suggesting that CB2R mediates the effects of cannabinoids mainly in the immune system. Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. These results suggest that a CB2R agonist may serve as a novel therapeutic strategy to prevent and/or treat acute pancreatitis. This conclusion is consistent with previous report that a CB2R agonist exhibits a protective effect on pathogenesis in an acute pancreatitis animal model. Our data showing a reduction of intracellular Ca2+ signaling by GW also provide a new target to interpret the role of CB2R agonists in treating acute pancreatitis in addition to CB2R-mediated anti-inflammation.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949433/]]>

Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms.

Image result for Am J Physiol Gastrointest Liver Physiol. “The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.” https://www.ncbi.nlm.nih.gov/pubmed/23139224
]]>