High-Intensity Swimming Exercise Decreases Glutamate-Induced Nociception by Activation of G-Protein-Coupled Receptors Inhibiting Phosphorylated Protein Kinase A.

Image result for Mol Neurobiol.

“Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain.

Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanisms through which high-intensity exercise reduces pain remain elusive.

Since the glutamatergic system plays a major role in pain transmission, we firstly analyzed if physical exercise could be able to decrease glutamate-induced nociception through G-protein-coupled receptor (G-PCR) activation.

The second purpose of this study was to examine the effect of exercising upon phosphorylation of protein kinase A (PKA) isoforms induced by intraplantar (i.pl.) glutamate injection in mice.

Our results demonstrate that high-intensity swimming exercise decreases nociception induced by glutamate and that i.pl. or intrathecal injections of cannabinoid, opioid, and adenosine receptor antagonists, AM281, naloxone, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), respectively, prevent this effect.

Furthermore, the peripheral A1 and opioid receptors, but not CB1, are also involved in exercise’s effect. We also verified that glutamate injection increases levels of phosphorylated PKA (p-PKA). High-intensity swimming exercise significantly prevented p-PKA increase.

The current data show the direct involvement of the glutamatergic system on the hyponociceptive effect of high-intensity swimming exercise as well as demonstrate that physical exercise can activate multiple intracellular pathways through G-PCR activation, which share the same endogenous mechanism, i.e., inhibition of p-PKA.”

http://www.ncbi.nlm.nih.gov/pubmed/27624384

pain in Extrapyramidal Neurodegenerative Diseases.

Image result for Clin J Pain.

“Pain is one of the most common non-motor symptoms of Parkinson disease (PD) and other Parkinson plus syndromes, with a major effect on quality of life.

The aims of the study were to examine the prevalence and characteristics of pain in PD and other Parkinson plus syndromes and patient use and response to pain medications.

The most beneficial analgesics were nonsteroidal anti-inflammatory drugs and medical cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/27623111

A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis.

Image result for journal of pain research

“A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease.

Dose-dependent improvement in pain score was evident across all pain scale elements.

Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids.

Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat.”

http://www.ncbi.nlm.nih.gov/pubmed/27621666

[Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

 

Image result for Zhong Nan Da Xue Xue Bao Yi Xue Ban logo

“Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids.”

Peltatoside Isolated from Annona crassiflora Induces Peripheral Antinociception by Activation of the Cannabinoid System.

Image result for Planta Med

“Peltatoside is a natural compound isolated from leaves of Annona crassiflora Mart., a plant widely used in folk medicine.

This substance is an analogue of quercetin, a flavonoid extensively studied because of its diverse biological activities, including analgesic effects. Besides, a previous study suggested, by computer structure analyses, a possible quercetin-CB1 cannabinoid receptor interaction.

Thus, the aim of this work was to assess the antinociceptive effect of peltatoside and analyze the cannabinoid system involvement in this action.

Our results suggest that this natural substance is capable of inducing analgesia through the activation of peripheral CB1 receptors, involving endocannabinoids in this process.”

http://www.ncbi.nlm.nih.gov/pubmed/27574895

Image result for Annona crassiflora Mart

Sex-dependent effects of cannabis-induced analgesia.

“Preclinical studies demonstrate that cannabinoid-mediated antinociceptive effects vary according to sex; it is unknown if these findings extend to humans.

These results indicate that in cannabis smokers, men exhibit greater cannabis-induced analgesia relative to women.

As such, sex-dependent differences in cannabis’s analgesic effects are an important consideration that warrants further investigation when considering the potential therapeutic effects of cannabinoids for pain relief.”

http://www.ncbi.nlm.nih.gov/pubmed/27522535

CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a.

“The CB1 cannabinoid receptor is a G-protein coupled receptor that has important physiological roles in synaptic plasticity, analgesia, appetite, and neuroprotection.

We report the discovery of two structurally related CB1 cannabinoid receptor interacting proteins (CRIP1a and CRIP1b) that bind to the distal C-terminal tail of CB1. CRIP1a and CRIP1b are generated by alternative splicing of a gene located on chromosome 2 in humans, and orthologs of CRIP1a occur throughout the vertebrates, whereas CRIP1b seems to be unique to primates.

CRIP1a coimmunoprecipitates with CB1receptors derived from rat brain homogenates, indicating that CRIP1a and CB1 interact in vivo. Furthermore, in superior cervical ganglion neurons coinjected with CB1 and CRIP1a or CRIP1b cDNA, CRIP1a, but not CRIP1b, suppresses CB1-mediated tonic inhibition of voltage-gated Ca2+ channels.

Discovery of CRIP1a provides the basis for a new avenue of research on mechanisms of CB1 regulation in the nervous system and may lead to development of novel drugs to treat disorders where modulation of CB1 activity has therapeutic potential (e.g., chronic pain, obesity, and epilepsy).”

http://www.ncbi.nlm.nih.gov/pubmed/17895407

[Cannabinoids in multiple sclerosis — therapeutically reasonable?].

“For centuries extracts from the Cannabis sativa plant have been used for recreational use and as remedies.

Anecdotal reports from patients with multiple sclerosis (MS) experiencing relief of their spasticity and pain after smoking marihuana have prompted discussions about a potential therapeutic application of cannabis preparations in MS.

Only recently the first large, multicenter, double-blind, placebo controlled study was conducted evaluating the use of cannabinoids for treatment of spasticity and other symptoms related to MS.

Based on this trial and previous uncontrolled observations together with insights from basic research and animal experiments there is reasonable evidence for the therapeutical employment of cannabinoids in the treatment of MS related symptoms.

Furthermore, data are arising that cannabinoids have immunomodulatory and neuroprotective properties.

This article summarizes the present knowledge of clinical and experimental research regarding the therapeutic potential of cannabinoids for the treatment of MS.”

http://www.ncbi.nlm.nih.gov/pubmed/16052440

Endocannabinoid system: Role in depression, reward and pain control (Review).

 

“Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society.

In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoidreceptor type 1 (CB1) and CB2.

Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively.

These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes.

Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain.

Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain.

Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.”

http://www.ncbi.nlm.nih.gov/pubmed/27484193

Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies

“Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes.

Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids.

Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.

Cannabinoids were originally derived from the cannabis plant, Cannabis sativa, which has been used medicinally and recreationally for many years because of its anti-inflammatory, analgesic, and psychoactive properties.”

http://online.liebertpub.com/doi/full/10.1089/can.2015.0001