“The use of cannabis products in the treatment of epilepsy has long been of interest to researchers and clinicians alike; however, until recently very little published data were available to support its use. This article summarizes the available scientific data of pharmacology from human and animal studies on the major cannabinoids which have been of interest in the treatment of epilepsy, including ∆9-tetrahydrocannabinol (∆9-THC), cannabidiol (CBD), ∆9-tetrahydrocannabivarin (∆9-THCV), cannabidivarin (CBDV), and ∆9-tetrahydrocannabinolic acid (Δ9-THCA). It has long been known that ∆9-THC has partial agonist activity at the endocannabinoid receptors CB1 and CB2, though it also binds to other targets which may modulate neuronal excitability and neuroinflammation. The actions of Δ9-THCV and Δ9-THCA are less well understood. In contrast to ∆9-THC, CBD has low affinity for CB1 and CB2 receptors and other targets have been investigated to explain its anticonvulsant properties including TRPV1, voltage gated potassium and sodium channels, and GPR55, among others. We describe the absorption, distribution, metabolism, and excretion of each of the above mentioned compounds. Cannabinoids as a whole are very lipophilic, resulting in decreased bioavailability, which presents challenges in optimal drug delivery. Finally, we discuss the limited drug-drug interaction data available on THC and CBD. As cannabinoids and cannabis-based products are studied for efficacy as anticonvulsants, more investigation is needed regarding the specific targets of action, optimal drug delivery, and potential drug-drug interactions.” https://www.ncbi.nlm.nih.gov/pubmed/28087250]]>
Tag Archives: Cannabinoids
Manipulation of the Endocannabinoid System in Colitis: A Comprehensive Review.
“Inflammatory bowel disease (IBD) is a lifelong disease of the gastrointestinal tract whose annual incidence and prevalence is on the rise. Current immunosuppressive therapies available for treatment of IBD offer limited benefits and lose effectiveness, exposing a significant need for the development of novel therapies. In the clinical setting, cannabis has been shown to provide patients with IBD symptomatic relief, although the underlying mechanisms of their anti-inflammatory effects remain unclear.
RESULTS:
Cannabinoid receptors 1 and 2, endogenous cannabinoids, and atypical cannabinoids are upregulated in inflammation, and their presence and stimulation attenuate murine colitis, whereas cannabinoid receptor antagonism and cannabinoid receptor deficient models reverse these anti-inflammatory effects. In addition, inhibition of endocannabinoid degradation through monoacylglycerol lipase and fatty acid amide hydrolase blockade can also attenuate colitis development, and is closely linked to cannabinoid receptor expression.CONCLUSIONS:
Although manipulation of the endocannabinoid system in murine colitis has proven to be largely beneficial in attenuating inflammation, there is a paucity of human study data. Further research is essential to clearly elucidate the specific mechanisms driving this anti-inflammatory effect for the development of therapeutics to target inflammatory disease such as IBD.” https://www.ncbi.nlm.nih.gov/pubmed/28079617 “Plant cannabinoids THC and CBD proved beneficial in DNBS-induced colitis in a bell-shaped dose-related response, but more importantly, the effects of the phytocannabinoids were additive, as CBD increased an ineffective THC dose to the level of an effective one.” https://academic.oup.com/ibdjournal/article/23/2/192/4347176Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.
“Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed.” https://www.ncbi.nlm.nih.gov/pubmed/25504799]]>
Brain cannabinoid receptor 2: expression, function and modulation.
“Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world’s adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.”
https://www.ncbi.nlm.nih.gov/pubmed/28065934
“Recent evidence shows that the endocannabinoid system is involved in the pathogenesis of numerous neurodegenerative diseases of the central nervous system. Pharmacologic modulation of 