Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus.

“Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system.

Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus.

In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response.

Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24510751

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor.

“Homocysteine (Hcy) is a high risk factor for Alzheimer’s disease (AD). Caudate nucleus (CN), the major component of basal ganglia in the brain, is also involved in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the true natural ligand for cannabinoid type-1 (CB1) receptors and the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in the hippocampus and CN.

In the present work, we explored that 2-AG significantly protects CN neurons in culture against Hcy-induced response.

2-AG is capable of inhibiting elevation of Hcy-induced cyclooxygenase-2 expression associated with nuclear factor-kappaB/p38MAPK/ERK1/2 signaling pathway through CB1 receptors-dependent way in primary cultured CN neurons.

Our study reveals the therapeutic potential for 2-AG for the treatment of neurodegenerative diseases, such as AD.”

http://www.ncbi.nlm.nih.gov/pubmed/25007951

Effect of Homocysteine on Voltage-Gated Sodium Channel Currents in Primary Cultured Rat Caudate Nucleus Neurons and Its Modulation by 2-Arachidonylglycerol.

“Homocysteine (Hcy) is an important risk factor for Alzheimer’s disease (AD) and other neurodegenerative diseases. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects from many stimuli in the central nervous system (CNS).

Furthermore, it has been reported that voltage-gated sodium channels (VGSCs) are the common targets of many neuronal damages and drugs.

However, it is still not clear whether VGSCs are involved in the neurotoxicity of Hcy and the neuroprotective effect of 2-AG in CN neurons. In the present study, whole-cell patch clamp recording was used to invest the action of Hcy on sodium currents in primary cultured rat CN neurons and its modulation by 2-AG.

The results showed that in cultured CN neurons, pathological concentration of Hcy (100 μM) significantly increased the voltage-gated sodium currents (I Na) and produced a hyperpolarizing shift in the activation-voltage curve of I Na.

The further data demonstrated 2-AG is capable of suppressing elevation of Hcy-induced increase in I Na and hyperpolarizing shift of activation curves most partly through CB1 receptor-dependent way.

Our study provides a better understanding of Hcy-associated neurological disorders and suggests the therapeutic potential for 2-AG for the treatment of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26179279

The Endocannabinoid System in Renal Cell: Regulation of Na+ Transport by CB1 Receptors Through Distinct Cell Signaling Pathways.

“The function of the endocannabinoid system (ECS) in the renal tissue is not completely understood.

We studied the effect of compounds modulating the activity of cannabinoid CB receptors on the active reabsorption of Na+ in LLC-PK1 cells.

CONCLUSION AND IMPLICATIONS: ECS is expressed in LLC-PK1 cells. Both TRPV1 and CB1 regulate (Na++K+)-ATPase activity in these cells, and are modulated by lipid and peptide CB1 ligands, which act via different signaling pathways”

.http://www.ncbi.nlm.nih.gov/pubmed/25537261

The endocannabinoid system in renal cell: Regulation of Na+ transport by CB1 receptors through distinct cell signaling pathways.

“The function of the endocannabinoid system (ECS) in the renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the reabsorption of 70- 80% of the filtrate.

We studied the effect of compounds modulating the activity of cannabinoid CB receptors on the active reabsorption of Na+ in LLC-PK1 cells.

CONCLUSION AND IMPLICATIONS:

ECS is expressed in LLC-PK1 cells. Both CB1 and TRPV1 regulate (Na+ +K+ )-ATPase activity in these cells, and are modulated by lipid and peptide CB1 ligands, which act via different signaling pathways.”

http://www.ncbi.nlm.nih.gov/pubmed/26177675

Enhanced vasorelaxation effect of endogenous anandamide on thoracic aorta in renal vascular hypertension rats.

“Emerging evidence indicated that anandamide (AEA) stimulated vasorelaxation in both spontaneously hypertensive rats (SHRs) and L-NAME-induced hypertensive rats. Yet it remains unknown whether AEA modulates vasomotion of aorta in renovascular hypertensive (RVH) rats.

The aim of present study was to explore the effect of AEA on relaxation of thoracic aortas in two-kidney one-clip (2K1C)-induced RVH rats.

Taken together, the present study demonstrated that AEA enhanced endothelium-dependent aortic relaxation through activation of both CB1 and CB2 receptors and P-eNOS/NO pathway in 2K1C rats.”

http://www.ncbi.nlm.nih.gov/pubmed/26173564

A synergistic interaction of 17-β-estradiol with specific cannabinoid receptor type 2 antagonist/inverse agonist on proliferation activity in primary human osteoblasts.

“The bone remodeling process is influenced by various factors, including estrogens and transmitters of the endocannabinoid system. In osteoblasts, cannabinoid receptors 2 (CB-2) are expressed at a much higher level compared to CB-1 receptors. Previous studies have shown that estrogens could influence CB-2 receptor expression.

In the present study, the possible interactions of a specific CB-2 agonist and a specific CB-2 antagonist/inverse agonist with 17-β-estradiol were investigated in primary human osteoblasts (HOB)…

In conclusion, for the first time a synergistic interaction between 17-β-estradiol and specific CB-2 antagonist/inverse agonist was observed in HOB.

Understanding the molecular pathways of this interaction would be of great importance in developing more efficient and safer drugs for treating or preventing bone diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26171165

[Changes over time of cannabinoid receptor 1 in hippocampus of status epilepticus rats].

To explore the changes over time of cannabinoid receptor 1 (CB1R) in hippocampus of status epilepticus (SE) rats…

There is a protective increase of CB1R in hippocampus of SE rats and then it returns to normal.

Thus CB1R may he involved in the occurrences and terminations of seizures.”

http://www.ncbi.nlm.nih.gov/pubmed/26168676

http://www.thctotalhealthcare.com/category/epilepsy-2/

Selective Reduction of THC’s Unwanted Effects through Serotonin Receptor Inhibition

“While recreational marijuana users may seek the full range of its effects, broad medical use of THC—including for pain, nausea, and anxiety—is hindered by them.

In a new study, Xavier Viñals, Estefania Moreno, Peter McCormick, Rafael Maldonado, Patricia Robledo, and colleagues demonstrate that the cognitive effects of THC are triggered by a pathway separate from some of its other effects.

That pathway involves both a cannabinoid receptor and a serotonin receptor, and when this pathway is blocked, THC can still exert several beneficial effects, including analgesia, while avoiding impairment of memory.

The results of this study are potentially highly important, in that they identify a way to reduce some of what are usually thought of as THC’s unwanted side effects when used for medicinal purposes while maintaining several important benefits, including pain relief.

The widening acceptance of a role for THC in medicine may be accelerated by the option to reduce those side effects by selective pharmacological disruption or blocking of the heteromer.”

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002193

Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor

Logo of nihpa

“We have previously shown that AEA exerts growth-suppressing effects on cholangiocarcinoma by inducing apoptosis.

At the time, we assumed that AEA was acting via a receptor-independent mechanism.

However, given the recent discovery and characterization of GPR55 as a novel AEA receptor, our data need to be reassessed to determine if GPR55 activation can decrease cholangiocarcinoma cell proliferation.

Thus, our aims are to determine if these AEA-mediated effects on cholangiocarcinoma cell growth can be attributed to the activation of GPR55.

This data represent the first evidence that GPR55 activation by anandamide can lead to the recruitment and activation of the Fas death receptor complex and that targeting GPR55 activation may be a viable option for the development of therapeutic strategies to treat cholangiocarcinoma.

In conclusion, we have clearly demonstrated a role for GPR55 in the antiproliferative effects of AEA in vivo andin vitro

Cholangiocarcinoma has a very poor prognosis and survival rate; therefore we propose that the development of novel therapeutic strategies that target GPR55 may prove beneficial for the treatment of this devastating disease.

Consistent with our observation that AEA has antiproliferative and pro-apoptotic properties, cannabinoids of various origins (endogenous, plant-derived or synthetic analogues) have been shown to suppress cancer cell growth in vitro as well as in vivo.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126905/