Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and γ-irradiation in human glioblastoma cells.

Related image“Despite advances in glioblastoma (GBM) therapy, prognosis of the disease remains poor with a low survival rate.

Cannabidiol (CBD) can induce cell death and enhance radiosensitivity of GBM but not normal astrocytes.

Inhibition of ATM kinase is an alternative mechanism for radiosensitization of cancer cells.

In this study, we increased the cytotoxic effects of the combination of CBD and γ-irradiation in GBM cells through additional inhibition of ATM kinase with KU60019, a small molecule inhibitor of ATM kinase.

We observed in GBM cells treated by CBD, γ-irradiation and KU60019 high levels of apoptosis together with strong upregulation of the percentage of G2/M-arrested cells, blockade of cell proliferation and a massive production of pro-inflammatory cytokines.

Overall, these changes caused both apoptotic and non-apoptotic inflammation-linked cell death. Furthermore, via JNK-AP1 activation in concert with active NF-κB, CBD upregulated gene and protein expression of DR5/TRAIL-R2 and sensitize GBM cells to TRAIL-induced apoptosis. In contrast, CBD notably decreased in GBM surface levels of PD-L1, a critical immune checkpoint agent for T-lymphocytes. We also used in the present study TS543 human proneural glioma cells that were grown as spheroid culture. TS543 neurospheres exhibited dramatic sensitivity to CBD-mediated killing that was additionally increased in combination with γ-irradiation and KU60019.

In conclusion, treatment of human GBM by the triple combination (CBD, γ-irradiation and KU60019) could significantly increase cell death levels in vitro and potentially improve the therapeutic ratio of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30783513

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26582&path[]=82682

What are the psychological effects of using synthetic cannabinoids? A systematic review

 Image result for journal of psychopharmacology

“Synthetic cannabinoids are, typically, full agonists at the cannabinoid CB1 receptor, and therefore considerably more potent than natural cannabis and may have correspondingly more serious psychological effects.

The purpose of this study was to synthesise the available research on the psychological consequences of synthetic cannabinoid use.

 

Non-controlled, cross-sectional studies generally showed that synthetic cannabinoid users had lower performance on cognitive tasks and showed elevated symptomatology (e.g. paranoia) compared to both natural cannabis and non-cannabis users.

 

Acute synthetic cannabinoid use can result in a range of psychological outcomes and, when non-intoxicated, synthetic cannabinoid users appear to differ from natural cannabis and non-users on various affective and cognitive domains.”

https://www.ncbi.nlm.nih.gov/pubmed/30789300

https://journals.sagepub.com/doi/abs/10.1177/0269881119826592?journalCode=jopa

Preliminary results from a pilot study examining brain structure in older adult cannabis users and nonusers.

Cover image Psychiatry Research: Neuroimaging

“Exploring associations among cannabis use, brain structure, and cognitive function in older adults offers an opportunity to observe potential harm or benefit of cannabis.

This pilot study assessed structural magnetic resonance imaging in older adults who were either current cannabis users (n = 28; mean age 69.8 years, 36% female) or nonusers (n = 28; mean age 66.8 years, 61% female).

Users and nonusers did not differ in terms of total gray or white matter volumes controlling for age and depression symptoms, but users showed greater regional volume of left putamen, lingual cortex, and rostral middle frontal cortex.

No significant differences between groups were observed in performance on a brief computerized cognitive battery.

These results suggest that cannabis use likely does not have a widespread impact on overall cortical volume while controlling for age.”

https://www.ncbi.nlm.nih.gov/pubmed/30785022

https://www.sciencedirect.com/science/article/pii/S0925492718302683?via%3Dihub

Cannabis use in youth is associated with limited alterations in brain structure

Image result for neuropsychopharmacology

“There were no significant differences by cannabis group in global or regional brain volumes, cortical thickness, or gray matter density, and no significant group by age interactions were found. Follow-up analyses indicated that values of structural neuroimaging measures by cannabis group were similar across regions, and any differences among groups were likely of a small magnitude. In sum, structural brain metrics were largely similar among adolescent and young adult cannabis users and non-users. Our data converge with prior large-scale studies suggesting small or limited associations between cannabis use and structural brain measures in youth.”

https://www.ncbi.nlm.nih.gov/pubmed/30780151

https://www.nature.com/articles/s41386-019-0347-2

Spontaneous, anecdotal, retrospective, open-label study on the efficacy, safety and tolerability of cannabis galenical preparation (Bedrocan).

International Journal of Pharmacy Practice banner

“Our main aim was to investigate the short-term therapeutic effects, safety/tolerability and potential side effects of the cannabis galenical preparation (Bedrocan) in patients with a range of chronic conditions unresponsive to other treatments.

METHODS:

In this retrospective, ‘compassionate use’, observational, open-label study, 20 patients (age 18-80 years) who had appealed to our ‘Second Opinion Medical Consulting Network’ (Modena, Italy), were instructed to take sublingually the galenical oil twice a day for 3 months of treatment. The usual starting dose was low (0.5 ml/day) and gradually titrated upward to the highest recommended dose (1 ml/day). Tolerability and adverse effects were assessed at baseline and monthly thereafter during the treatment period through direct contact (email or telephone) or visit if required. Patients’ quality of life was evaluated at baseline and 3 months using the medical outcome short-form health survey questionnaire (SF-36).

KEY FINDINGS:

From baseline to 6 months post-treatment, SF-36 scores showed: reductions in total pain (P < 0.03); improvements in the physical component (P < 0.02); vitality (P < 0.03); social role functioning (P < 0.02); and general health state (P < 0.02). No changes in role limitations (P = 0.02) due to emotional state (e.g. panic, depression, mood alteration) were reported. Monthly reports of psychoactive adverse effects showed significant insomnia reduction (P < 0.03) and improvement in mood (P < 0.03) and concentration (P < 0.01).

CONCLUSIONS:

These data suggest that a cannabis galenical preparation may be therapeutically effective and safe for the symptomatic treatment of some chronic diseases. Further studies on the efficacy of cannabis as well as cannabinoid system involvement in the pathophysiology are warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/30768819

https://onlinelibrary.wiley.com/doi/full/10.1111/ijpp.12514

Cannabis for refractory epilepsy in children: A review focusing on CDKL5 Deficiency Disorder.

Epilepsy Research

“Severe paediatric epilepsies such as CDKL5 Deficiency Disorder (CDD) are extremely debilitating, largely due to the early-onset and refractory nature of the seizures. Existing treatment options are often ineffective and associated with a host of adverse effects, causing those that are affected to seek alternative treatments.

Cannabis based products have attracted significant attention over recent years, primarily driven by reports of miraculous cures and a renewed public preference for ‘natural’ therapies, thus placing intense pressure on health professionals and the government for regulatory change.

This study provides a comprehensive overview of the potential role for cannabis in the treatment of CDD. Key areas discussed include the history, mechanism of action, efficacy and safety of cannabis based preparations as well as the burden related to CDD.

The evidence supports the use of cannabinoids, especially cannabidiol, in similar forms of refractory epilepsy including Dravet and Lennox-Gastaut syndromes. Evidence for cannabinoids specifically in CDD is limited but growing, with multiple anecdotal reports and an open-label trial showing cannabidiol to be associated with a significant reduction in seizure activity.

This review provides the first comprehensive overview of the potential role for cannabis based preparations in the treatment of CDD and provides justification for further clinical and observational research.”

https://www.ncbi.nlm.nih.gov/pubmed/30771550

https://www.sciencedirect.com/science/article/pii/S0920121118306107?via%3Dihub

Dronabinol for the Treatment of Paraneoplastic Night Sweats in Cancer Patients: A Report of Five Cases.

 View details for Journal of Palliative Medicine cover image“Night sweats significantly impact the quality of life for cancer patients and are often resistant to treatment.

Cannabinoids have been shown to modulate cytokine activity and produce hypothermia in animal models, suggesting that they may be a promising candidate for palliation of night sweats in patients with oncologic disease.

A retrospective record search identified five cancer patients who had tried oral dronabinol for palliation of their night sweats between 2013 and 2016 and subjectively reported on its efficacy.

 

RESULTS:

Treatment of five patients with advanced cancer with synthetic orally administered dronabinol resulted in the successful management of persistent symptomatic paraneoplastic night sweats.

CONCLUSION:

Dronabinol and/or medicinal cannabis are promising therapies for palliation of night sweats in cancer patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30759037

https://www.liebertpub.com/doi/10.1089/jpm.2018.0551

miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids.

Image result for plos one

“Mammalian microRNAs (miRNAs) play a critical role in modulating the response of immune cells to stimuli.

Cannabinoids are known to exert beneficial actions such as neuroprotection and immunosuppressive activities. However, the underlying mechanisms which contribute to these effects are not fully understood.

We previously reported that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signaling pathways.

Using lipopolysaccharide (LPS) to stimulate BV-2 microglial cells, we examined the role of cannabinoids on the expression of miRNAs. Expression was analyzed by performing deep sequencing, followed by Ingenuity Pathway Analysis to describe networks and intracellular pathways.

miRNA sequencing analysis revealed that 31 miRNAs were differentially modulated by LPS and by cannabinoids treatments. In addition, we found that at the concentration tested, CBD has a greater effect than THC on the expression of most of the studied miRNAs.

The results clearly link the effects of both LPS and cannabinoids to inflammatory signaling pathways. LPS upregulated the expression of pro-inflammatory miRNAs associated to Toll-like receptor (TLR) and NF-κB signaling, including miR-21, miR-146a and miR-155, whereas CBD inhibited LPS-stimulated expression of miR-146a and miR-155. In addition, CBD upregulated miR-34a, known to be involved in several pathways including Rb/E2f cell cycle and Notch-Dll1 signaling.

Our results show that both CBD and THC reduced the LPS-upregulated Notch ligand Dll1 expression. MiR-155 and miR-34a are considered to be redox sensitive miRNAs, which regulate Nrf2-driven gene expression. Accordingly, we found that Nrf2-mediated expression of redox-dependent genes defines a Mox-like phenotype in CBD treated BV-2 cells.

In summary, we have identified a specific repertoire of miRNAs that are regulated by cannabinoids, in resting (surveillant) and in LPS-activated microglia. The modulated miRNAs and their target genes are controlled by TLR, Nrf2 and Notch cross-talk signaling and are involved in immune response, cell cycle regulation as well as cellular stress and redox homeostasis.”

Cannabidiol in patients with Lennox-Gastaut syndrome: Interim analysis of an open-label extension study.

Epilepsia banner

“Patients with Lennox-Gastaut syndrome (LGS) who completed 1 of 2 randomized, double-blind, placebo-controlled trials of add-on cannabidiol (CBD) (GWPCARE3, NCT02224560 or GWPCARE4, NCT02224690) were invited to enroll in an open-label extension (OLE) study evaluating the long-term safety and efficacy of CBD (GWPCARE5, NCT02224573). Herein we present an interim analysis of the safety, efficacy, and patient-reported outcomes from this trial.

METHODS:

Patients received a pharmaceutical formulation of highly purified CBD oral solution (Epidiolex; 100 mg/mL), titrated from 2.5 to 20 mg/kg/d over a 2-week titration period, in addition to their existing medications. Doses could be reduced if not tolerated or increased up to 30 mg/kg/d if thought to be of benefit.

RESULTS:

This interim analysis was based on a November 2016 data cut. Of 368 patients who completed treatment in GWPCARE3 and GWPCARE4, 366 (99.5%) enrolled in the OLE study (GWPCARE5). Median treatment duration was 38 weeks at a mean modal dose of 23 mg/kg/d. Most patients (92.1%) experienced adverse events (AEs), primarily of mild (32.5%) or moderate (43.4%) severity. The most common AEs were diarrhea (26.8%), somnolence (23.5%), and convulsion (21.3%). Thirty-five patients (9.6%) discontinued treatment due to AEs. Liver transaminase elevations were reported in 37 patients (10.1%), of whom 29 were receiving concomitant valproic acid; 34 cases resolved spontaneously or with dose modification of CBD or concomitant medication. Median reduction from baseline in drop seizure frequency (quantified monthly over 12-week periods) ranged from 48% to 60% through week 48. Median reduction in monthly total seizure frequency ranged from 48% to 57% across all 12-week periods through week 48. Eighty-eight percent of patients/caregivers reported an improvement in the patient’s overall condition per the Subject/Caregiver Global Impression of Change scale.

SIGNIFICANCE:

In this study, long-term add-on CBD treatment had an acceptable safety profile in patients with LGS and led to sustained reductions in seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/30740695

https://onlinelibrary.wiley.com/doi/full/10.1111/epi.14670

Combined tetrahydrocannabinol and cannabidiol to treat pain in epidermolysis bullosa: a report of three cases

British Journal of Dermatology banner

“Epidermolysis bullosa (EB) is a genetic blistering disorder characterized by intense pain related to disease pathology and care‐based interventions.

Opioid‐based therapies underpin pain care in EB; however, they are unable to provide adequate analgesia in a significant proportion of patients.

Cannabinoid‐based medicines (CBMs) have been studied increasingly for pain conditions of various aetiologies and pose as a novel dimension for pain care in EB.

We present three patients with EB who were prescribed pharmaceutical‐grade sublingually administered CBMs comprising tetrahydrocannabinol and cannabidiol.

All three patients reported improved pain scores, reduced pruritus and reduction in overall analgesic drug intake.”

https://www.ncbi.nlm.nih.gov/pubmed/30347109

https://onlinelibrary.wiley.com/doi/full/10.1111/bjd.17341

“Cannabinoids Could Help Manage EB-related Pain, Study Suggests”  https://epidermolysisbullosanews.com/2019/02/08/cannabinoids-could-help-manage-eb-related-pain-study-suggests/