The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner.

“The essential role of GAPDH/Siah1 signaling pathway in the pathogenesis of various injurious conditions such as traumatic spinal cord injury (SCI) has been gradually recognized. However, the drugs targeting this signaling pathway are still lacking. The endocannabinoid system, including its receptors (CB1 and CB2), act as neuroprotective and immunomodulatory modulators in SCI. WIN55212-2, an agonist for CB1 and CB2 receptors, has been demonstrated with anti-inflammatory and anti-apoptotic effects in multiple neurological diseases. Therefore, the present study aimed to investigate whether WIN55212-2 could promote functional recovery after traumatic SCI via inhibition of the GAPDH/Siah1 signaling. In conclusion, our study indicates that, WIN55212-2 improves the functional recovery after SCI via inhibition of GAPDH/Siah1 cascades in a CB2 receptor dependent manner, indicative of its therapeutic potential for traumatic SCI or other traumatic conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28716633]]>

Sativex® effects on promoter methylation and on CNR1/CNR2 expression in peripheral blood mononuclear cells of progressive multiple sclerosis patients.

“Multiple sclerosis (MS) is a chronic demyelinating central nervous system (CNS) disease that involve oligodendrocyte loss and failure to remyelinate damaged brain areas causing a progressive neurological disability. Studies in MS mouse model suggest that cannabinoids ameliorate symptoms as spasticity, tremor and pain reducing inflammation via cannabinoid-mediated system. The aim of our study is to investigate the changes in cannabinoid type 1 (CNR1) and 2 (CNR2) receptors mRNA expression levels and promoter methylation in peripheral blood mononuclear cells (PBMCs) of MS secondary progressive (MSS-SP) patients treated with Sativex®. These results suggest that the different expression of cannabinoid receptors by Sativex® treatment in leukocytes might be regulated through a molecular mechanism that involve interferon modulation.” https://www.ncbi.nlm.nih.gov/pubmed/28716266 http://www.jns-journal.com/article/S0022-510X(17)30392-1/fulltext]]>

Anticonvulsant effect of cannabinoid receptor agonists in models of seizures in developing rats.

“Although drugs targeting the cannabinoid system (e.g., CB1 receptor agonists) display anticonvulsant efficacy in adult animal models of seizures/epilepsy, they remain unexplored in developing animal models. However, cannabinoid system functions emerge early in development, providing a rationale for targeting this system in neonates. We examined the therapeutic potential of drugs targeting the cannabinoid system in three seizure models in developing rats. The mixed CB1/2 agonist and the CB1-specific agonist, but no other drugs, displayed anticonvulsant effects against clonic seizures in the DMCM model. By contrast, both CB1 and CB2 antagonism increased seizure severity. Similarly, we found that the CB1/2 agonist displayed antiseizure efficacy against acute hypoxia-induced seizures (automatisms, clonic and tonic-clonic seizures) and tonic-clonic seizures evoked by PTZ. Early life seizures represent a significant cause of morbidity, with 30-40% of infants and children with epilepsy failing to achieve seizure remission with current pharmacotherapy. Identification of new therapies for neonatal/infantile epilepsy syndromes is thus of high priority. These data indicate that the anticonvulsant action of the CB system is specific to CB1 receptor activation during early development and provide justification for further examination of CB1 receptor agonists as novel antiepileptic drugs targeting epilepsy in infants and children.” https://www.ncbi.nlm.nih.gov/pubmed/28691158 http://onlinelibrary.wiley.com/doi/10.1111/epi.13842/abstract]]>

Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations.

ijms-logo “Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain’s EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.”  https://www.ncbi.nlm.nih.gov/pubmed/28671614
]]>