The Endocannabinoid System and its Modulation by Phytocannabinoids

“The endocannabinoid system is currently defined as the ensemble of the two 7-transmembrane-domain and G protein-coupled receptors for Δ9-tetrahydrocannabinol (but not for most other plant cannabinoids or phytocannabinoids)—cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R); their two most studied endogenous ligands, the “endocannabinoids” N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG); and the enzymes responsible for endocannabinoid metabolism.

However, anandamide and 2-AG, and also the phytocannabinoids, have more molecular targets than just CB1R and CB2R.

Furthermore, the endocannabinoids, like most other lipid mediators, have more than just one set of biosynthetic and degrading pathways and enzymes, which they often share with “endocannabinoid-like” mediators that may or may not interact with the same proteins as Δ9-tetrahydrocannabinol and other phytocannabinoids.

In some cases, these degrading pathways and enzymes lead to molecules that are not inactive and instead interact with other receptors.

Finally, some of the metabolic enzymes may also participate in the chemical modification of molecules that have very little to do with endocannabinoid and cannabinoid targets.

Here, we review the whole world of ligands, receptors, and enzymes, a true “endocannabinoidome”, discovered after the cloning of CB1R and CB2R and the identification of anandamide and 2-AG, and its interactions with phytocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/26271952

http://link.springer.com/article/10.1007%2Fs13311-015-0374-6

Dissecting the cannabinergic control of behavior: The where matters.

“The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa, the Δ9 -tetrahydrocannabinol (THC).

This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions.

This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB1 R).

Centrally, CB1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria).

Interestingly, cellular and molecular effects are differentially mediated by CB1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons).

Thus, understanding the cellular and subcellular function of CB1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/26260530

Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications.

“Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems.

One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells.

These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells).

This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s chorea, and amyotrophic lateral sclerosis.

This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression…”

http://www.ncbi.nlm.nih.gov/pubmed/26260390

Cannabinoids Regulate Intestinal Motor Function and Electrophysiological Activity of Myocytes in Rodents.

“This study aims to investigate the effects of cannabinoid (CB)-1 and CB2 receptor ligands on intestinal motor function and muscular electrophysiological activity in rodent gastrointestinal (GI) tract…

This is one of the first reports on neuronal regulation of intestinal motility through CB-dependent pathways with potential application in the treatment of inflammatory and functional GI disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26254701

The role of the peripheral cannabinoid system in the pathogenesis of detrusor overactivity evoked by increased intravesical osmolarity in rats.

“The cannabinoid receptors CB1 and CB2 are localized in the urinary bladder and play a role in the regulation of its function. We investigated the pathomechanisms through which hyperosmolarity induces detrusor overactivity (DO)…

These results demonstrate that hyperosmolar-induced DO is mediated by CB1 and CB2 receptors. Therefore, the cannabinoid pathway could potentially be a target for the treatment of urinary bladder dysfunction.”

http://www.ncbi.nlm.nih.gov/pubmed/26243021

The levels of the endocannabinoid receptor CB2 and its ligand 2-arachidonoylglycerol are elevated in endometrial carcinoma.

Issue Cover

“The endocannabinoid system plays protective roles against the growth and the spreading of several types of carcinomas.

Because estrogens regulate this system both in physiological states and cancer, in this paper we evaluated its involvement in endometrial carcinoma, a well-known estrogen-dependent tumor.

In conclusion, the endocannabinoid system seems to play an important role in human endometrial carcinoma, and modulation of CB(2) activity/expression may account for a tumor-suppressive effect.”

http://www.ncbi.nlm.nih.gov/pubmed/20133454

https://academic.oup.com/endo/article/151/3/921/2456492

Effect of Non-psychotropic Plant-derived Cannabinoids on Bladder Contractility: Focus on Cannabigerol.

“There are anecdotal reports that some Cannabis preparations may be useful for bladder dysfunctions.

Here, we investigated the effect of a number of non- psychotropic phytocannabinoids, namely cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabichromene (CBC) on mouse bladder contractility in vitro.

CBG, THCV, CBD and CBDV, but not CBC, at concentration ranging from 10(-8) M to 10(-4) M, decreased (with similar potency), the contractions induced by acetylcholine without significantly modifying the contractions induced by electrical stimulation.

The rank order of efficacy was CBG=THCV>CBD>CBDV.

In depth studies on CBG showed that the effect of this phytocannabinoid on acetylcholine-induced contractions was not affected by CB1 or CB2 receptor antagonists.

Additionally, CBG also reduced acetylcholine-induced contractions in the human bladder.”

http://www.ncbi.nlm.nih.gov/pubmed/26197538

Phytocannabinoids for Cancer Therapeutics: Recent Updates and Future Prospects.

“Phytocannabinoids (pCBs) are lipid-soluble phytochemicals present in the plant, Cannabis sativa L. and non-cannabis plants which have a long history in traditional and recreational medicine.

The plant and constituents were central in the discovery of the endocannabinoid system, the most new target for drug discovery.

The endocannabinoid system includes two G protein-coupled receptors; the cannabinoid receptors-1 and -2 (CB1 and CB2) for marijuana’s psychoactive principle ∆(9)-tetrahydrocannabinol (∆9-THC), their endogenous small lipid ligands; namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), also known as endocannabinoids and the proteins for endocannabinoid biosynthesis and degradation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

The endocannabinoid system has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during pathological conditions including cancer.

Targeting the CB1 receptors become a concern because of adverse psychotropic reactions. Hence, targeting the CB2 receptors or the endocannabinoid metabolizing enzyme by phytocannabinoids obtained from non-cannabis plant lacking psychotropic adverse reactions has garnered interest in drug discovery.

These pCBs derived from plants beyond cannabis appear safe and effective with a wider access and availability.

In recent years, several pCBs derived other than non-cannabinoid plants have been reported to bind to and functionally interact with cannabinoid receptors and appear promising candidate for drug development in cancer therapeutics.

Several of them also target the endocannabinoid metabolizing enzymes that control endocannabinoid levels. In this article, we summarize, critically discuss the updates and future prospects of the pCBs as novel and promising candidates for cancer therapeutics.”

http://www.ncbi.nlm.nih.gov/pubmed/26179998

http://www.thctotalhealthcare.com/category/cancer/

Enhanced vasorelaxation effect of endogenous anandamide on thoracic aorta in renal vascular hypertension rats.

“Emerging evidence indicated that anandamide (AEA) stimulated vasorelaxation in both spontaneously hypertensive rats (SHRs) and L-NAME-induced hypertensive rats. Yet it remains unknown whether AEA modulates vasomotion of aorta in renovascular hypertensive (RVH) rats.

The aim of present study was to explore the effect of AEA on relaxation of thoracic aortas in two-kidney one-clip (2K1C)-induced RVH rats.

Taken together, the present study demonstrated that AEA enhanced endothelium-dependent aortic relaxation through activation of both CB1 and CB2 receptors and P-eNOS/NO pathway in 2K1C rats.”

http://www.ncbi.nlm.nih.gov/pubmed/26173564

Roles for the endocannabinoid system in ethanol-motivated behavior.

“Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed.

The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system.

For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways.

Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients.

In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior.

Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.”