Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke.

“Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate.

Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage.

Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders.

The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.”

http://www.ncbi.nlm.nih.gov/pubmed/17979695

Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning

“This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.

In this review, we will discuss the triggers and sources of endocannabinoid production during various forms of I/R injury (myocardial, cerebral, hepatic and retinal ischaemia, and circulatory shock) and preconditioning, as well as the diverse role of these novel mediators and their receptors in these processes. We will also overview the accumulating evidence obtained through the use of various synthetic CB1/CB2 receptor ligands, with particular focus on the novel role of CB2 receptors, suggesting that the modulation of the endocannabinoid system can be therapeutically exploited in various forms of I/R injury.

Cerebral I/R (stroke)

The first evidence for the neuroprotective effect of CBs came from the stroke research field from studies using synthetic non-psychotropic CB Dexanabinol/HU-211, which exerted its beneficial effects through CB1/CB2-independent mechanisms.

Collectively, it appears that both CB1 agonists and antagonists may afford neuroprotective effects against cerebral I/R…

There is considerable interest in the development of selective CB2 receptor agonists, which are devoid of psychoactive properties of CB1 agonists, for various inflammatory disorders. Further studies should also establish the therapeutic window of protection during the reperfusion phase with the currently available CB2 receptor agonists, and new compounds should also be designed with better in vivo bioavailability, to devise clinically relevant treatment strategies against various forms of I/R. Nevertheless, the recently observed beneficial effects of CB2 receptor agonists in hepatic and other forms of I/R, coupled with the absence of psychoactive properties, and antifibrotic effects of CB2 receptor in the liver suggest that this approach may represent a novel promising strategy against various forms of I/R injury and other inflammatory disorders.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219536/

Cannabinoid receptors as novel targets for the treatment of melanoma

“Melanoma causes the greatest number of skin cancer-related deaths worldwide. Here, we evaluated the efficacy of cannabinoid receptor agonists, a new family of potential antitumoral compounds, at skin melanoma. Human melanomas and melanoma cell lines express CB1 and CB2 cannabinoid receptors. Activation of these receptors decreased growth, proliferation, angiogenesis and metastasis, and increased apoptosis, of melanomas in mice. Cannabinoid antimelanoma activity was independent of the immune status of the animal, could be achieved without overt psychoactive effects and was selective for melanoma cells vs. normal melanocytes.

Cannabinoid antiproliferative action on melanoma cells…

 These findings may contribute to the design of new chemotherapeutic strategies for the management of melanoma.

 …the present report, together with the implication of CB2 receptors in the control of processes such as pain initiation, emesis, and inflammation, opens the attractive possibility of finding cannabinoid-based therapeutic strategies devoid of nondesired psychotropic side effects.

Specifically, the antiproliferative effect of cannabinoids reported here may set the basis for a new therapeutic approach for the treatment of malignant melanoma.”

Full text: http://www.fasebj.org/content/20/14/2633.long

Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors

“Cannabinoids inhibit skin tumor growth in vivo. Here we show that the CB1 and the CB2 receptor are expressed in normal skin and skin tumors of mice and humans. In cell culture experiments pharmacological activation of cannabinoid receptors induced the apoptotic death of tumorigenic epidermal cells, whereas the viability of nontransformed epidermal cells remained unaffected. Local administration of the mixed CB1/CB2 agonist WIN-55,212-2 or the selective CB2 agonist JWH-133 induced a considerable growth inhibition of malignant tumors generated by inoculation of epidermal tumor cells into nude mice. Cannabinoid-treated tumors showed an increased number of apoptotic cells.

 

Cannabinoids, the active components of Cannabis sativa linnaeus (marijuana)…

Marijuana and its derivatives have been used in medicine for many centuries, and currently there is a renaissance in the study of the therapeutic effects of cannabinoids… cannabinoids may be potential antitumoral agents owing to their ability to induce the regression of various types of tumors, including lung adenocarcinoma, glioma, and thyroid epithelioma in animal models.

This background prompted us to explore whether (a) the skin and skin tumors express cannabinoid receptors; (b) cannabinoid receptor activation exerts a growth-inhibiting action on skin tumors in vivo; and (c) inhibition of angiogenesis is implicated in the anti-tumoral effect of cannabinoids.

Our data show that (a) CB1 and CB2 receptors are present in the skin and skin tumors; (b) local cannabinoid receptor activation induces the regression of skin tumors in vivo; and (c) at least two mechanisms may be involved in this action: direct apoptosis of tumor cells and inhibition of tumor angiogenesis.

These results support a new therapeutic approach for the treatment of skin tumors.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151833/

The Cannabinoid Receptors are Required for UV-Induced Inflammation and Skin Cancer Development

“Solar ultraviolet (UV) irradiation is an important carcinogen that leads to the development of skin cancer, which is the most common human cancer. However, the receptors that mediate UV-induced skin carcinogenesis have not yet been unequivocally identified. Here we showed that UV irradiation directly activates the cannabinoid receptors 1 and 2 (CB1/2)…

These data provide direct evidence indicating that the CB1/2 receptors play a key role in UV-induced inflammation and skin cancer development…

Manipulation of the cannabinoid receptors has been useful in the management of pain, treatment of osteoporosis, inflammation, and cancer…”

.Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390870/

 

Peripheral Cannabinoids Attenuate Carcinoma Induced Nociception in Mice

“Cancer pain remains poorly understood and there are no effective therapies…

 We tested whether a local CBr2 agonist produces antinociception. Our findings suggest that a peripheral CBr2 agonist could provide relief for cancer patients. Cannabinoids also potentiate the analgesic effects of morphine and prevent tolerance.

These desirable effects of cannabinoids show promise for management of cancer pain and may lead to improved analgesic therapy.

These findings support the suggestion that cannabinoids are capable of producing antinociception in carcinoma-induced pain.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771220/

The antimitogenic effect of the cannabinoid receptor agonist WIN55212-2 on human melanoma cells is mediated by the membrane lipid raft.

“Here are reported the antiproliferative effects of the cannabinoid agonist WIN upon human melanoma cells expressing mRNA and protein for both CB1 and CB2 receptors.

While WIN exerted antimitogenic effects, selective CB1 or CB2 agonists were unable to reproduce such effects and selective CB1 and CB2 antagonists did not inhibit WIN-induced cell death. Cells treated with WIN, preincubated with the lipid raft disruptor methylcyclodestrin, were rescued from death. WIN induced activation of caspases and phosphorylation of ERK that were attenuated in cultures treated with methylcyclodestrin.

 Membrane lipid raft complex-mediated antimitogenic effect of WIN in melanoma could represents a potential targets for a melanoma treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/21807457

The CB1/CB2 receptor agonist WIN-55,212-2 reduces viability of human Kaposi’s sarcoma cells in vitro.

“Kaposi’s sarcoma is a highly vascularized mesenchymal neoplasm arising with multiple lesions of the skin. Endogenous cannabinoids have been shown to inhibit proliferation of a wide spectrum of tumor cells. We studied the effects of cannabinoids on human Kaposi’s sarcoma cell proliferation in vitro.

 To do so, we first investigated the presence of the cannabinoid receptors CB(1) and CB(2) mRNAs in the human Kaposi’s sarcoma cell line KS-IMM by RT-PCR and, subsequently, the effects of the mixed CB(1)/CB(2) agonist WIN-55,212-2 (WIN) on cell proliferation in vitro. WIN showed antimitogenic effects on Kaposi’s sarcoma cells…

  In view of the antiproliferative effects of cannabinoids on KS-IMM cells, one could envision the cannabinoid system as a potential target for pharmacological treatment of Kaposi’s sarcoma”

http://www.ncbi.nlm.nih.gov/pubmed/19539619

Presence of functional cannabinoid receptors in human endocrine pancreas.

“We examined the presence of functional cannabinoid receptors 1 and 2 (CB1, CB2) in isolated human islets, phenotyped the cells producing cannabinoid receptors and analysed the actions of selective cannabinoid receptor agonists on insulin, glucagon and somatostatin secretion in vitro. We also described the localisation on islet cells of: (1) the endocannabinoid-producing enzymes N-acyl-phosphatidyl ethanolamine-hydrolysing phospholipase D and diacylglycerol lipase; and (2) the endocannabinoid-degrading enzymes fatty acid amidohydrolase and monoacyl glycerol lipase.

RESULTS:

Human islets of Langerhans expressed CB1 and CB2 (also known as CNR1 and CNR2) mRNA and CB1 and CB2 proteins, and also the machinery involved in synthesis and degradation of 2-AG (the most abundant endocannabinoid, levels of which were modulated by glucose). Immunofluorescence revealed that CB1 was densely located in glucagon-secreting alpha cells and less so in insulin-secreting beta cells. CB2 was densely present in somatostatin-secreting delta cells, but absent in alpha and beta cells. In vitro experiments revealed that CB1 stimulation enhanced insulin and glucagon secretion, while CB2 agonism lowered glucose-dependent insulin secretion, showing these cannabinoid receptors to be functional.

CONCLUSIONS/INTERPRETATION:

Together, these results suggest a role for endogenous endocannabinoid signalling in regulation of endocrine secretion in the human pancreas.”

http://www.ncbi.nlm.nih.gov/pubmed/18092149

Mechanisms for the coupling of cannabinoid receptors to intracellular calcium mobilization in rat insulinoma beta-cells.

“In RIN m5F rat insulinoma beta-cells, agonists at cannabinoid CB(1) receptors modulate insulin release. Here we investigated in these cells the effect of the activation of cannabinoid CB(1) and CB(2) receptors on intracellular Ca(2+) ([Ca(2+)](i)). The CB(1) agonist arachidonoyl-chloro-ethanolamide (ACEA), and the CB(2) agonist JWH133, elevated [Ca(2+)](i) in a way sensitive to the inhibitor of phosphoinositide-specific phospholipase C (PI-PLC), U73122 (but not to pertussis toxin and forskolin), and independently from extracellular Ca(2+). PI-PLC-dependent Ca(2+) mobilization by ACEA was entirely accounted for by activation of inositol-1,3,4-phosphate (IP(3)) receptors on the endoplasmic reticulum (ER), whereas the effect of JWH133 was not sensitive to all tested inhibitors of IP(3) and ryanodine receptors. ACEA, but not JWH133, significantly inhibited the effect on [Ca(2+)](i) of bombesin, which acts via G(q/11)- and PI-PLC-coupled receptors in insulinoma cells. The endogenous CB(1) agonists, anandamide and N-arachidonoyldopamine, which also activate transient receptor potential vanilloid type 1 (TRPV1) receptors expressed in RIN m5F cells, elevated [Ca(2+)](i) in the presence of extracellular Ca(2+) in a way sensitive to both CB(1) and TRPV1 antagonists. These results suggest that, in RIN m5F cells, CB(1) receptors are coupled to PI-PLC-mediated mobilization of [Ca(2+)](i) and might inhibit bombesin signaling.”

http://www.ncbi.nlm.nih.gov/pubmed/17585904