Monoacylglycerol Lipase Activity Is a Critical Modulator of the Tone and Integrity of the Endocannabinoid System

“Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.”

“In summary, we provide data showing that MAGL is a critical modulator of 2-AG levels and functions and that the endocannabinoid system adapts to long-term elevation of 2-AG levels by down-regulating CB1 receptor density and signaling. Moreover, our gain of function in vivo model of 2-AG signaling sheds light on the physiological and pathophysiological consequences of long-term inhibition of MAGL, a pharmacological target with therapeutic potential for neurologic and metabolic diseases.”

http://molpharm.aspetjournals.org/content/78/6/996.long

Therapeutic potential of endocannabinoid-hydrolysing enzyme inhibitors.

Abstract

“The specific protein target of delta9-tetrahydrocannabinol (delta9-THC), the main active ingredient of Cannabis sativa L., was characterized from rat brain nearly 20 years ago, and several endogenous compounds and proteins comprising the endocannabinoid (eCB) system have since been discovered. It has become evident that the eCB system consists of at least two cannabinoid receptors (i.e. the CB1 and CB2 receptors), in addition to their endogenous ligands (the eCBs) and several enzymes involved in the biosynthesis and catabolism of the eCBs. The two well-established eCBs, N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), are produced by neurons on demand, act near their sites of synthesis and are effectively metabolized by fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL), respectively. Inhibitors specifically targeting these enzymes could offer novel therapeutic approaches (e.g. for the treatment of pain and movement disorders). This MiniReview summarizes the literature concerning the potential therapeutic potential of FAAH and MGL inhibitors.”

http://www.ncbi.nlm.nih.gov/pubmed/17910610

Discovery and development of endocannabinoid-hydrolyzing enzyme inhibitors.

Abstract

“Fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL) are hydrolytic enzymes which degrade the endogenous cannabinoids (endocannabinoids) N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), respectively. Endocannabinoids are an important class of lipid messenger molecules that are produced on demand in response to elevated intracellular calcium levels. They recognize and activate the cannabinoid CB(1) and CB(2) receptors, the molecular targets for Delta(9)-tetrahydrocannabinol (Delta(9)-THC) in marijuana evoking several beneficial therapeutic effects. However, in vivo the cannabimimetic effects of AEA and 2-AG remain weak owing to their rapid inactivation by FAAH and MGL, respectively. The inactivation of FAAH and MGL by specific enzyme inhibitors increases the levels of AEA and 2-AG, respectively, producing therapeutic effects such as pain relief and depression of anxiety.”

http://www.ncbi.nlm.nih.gov/pubmed/20370710

Endogenous cannabinoids and neutrophil chemotaxis.

Abstract

  “Neutrophils are the earliest inflammatory cell to infiltrate tissue, playing an important role in early phagocytosis. Under pathological conditions, pro-inflammatory actions of neutrophils contribute to the development of various inflammatory diseases. G(i) protein-coupled cell-surface receptors are an essential component of pro-migratory responses in leukocytes; however, few investigations regarding inhibitors of cell migration have been reported. Kurihara et al. (2006) and McHugh et al. (2008) have revealed that certain endogenous cannabinoids and lipids are potent inhibitors of induced human neutrophil migration. McHugh et al. implicate a novel SR141716A-sensitive pharmacological target distinct from cannabinoid CB(1) and CB(2) receptors, which is antagonized by N-arachidonoyl-l-serine; and that the CB(2) receptor exerts negative co-operativity upon this receptor. Kurihara et al. demonstrate that fMLP-induced RhoA activity is decreased following endocannabinoid pretreatment, disrupting the front/rear polarization necessary for neutrophils to engage in chemotaxis.

The therapeutic potential of exploiting endocannabinoids as neutrophilic chemorepellants is plain to see.”

http://www.ncbi.nlm.nih.gov/pubmed/19647118

Inhibition of Human Neutrophil Chemotaxis by Endogenous Cannabinoids and Phytocannabinoids: Evidence for a Site Distinct from CB1 and CB2

   “Here, we show a novel pharmacology for inhibition of human neutrophil migration by endocannabinoids, phytocannabinoids, and related compounds. The endocannabinoids virodhamine and N-arachidonoyl dopamine are potent inhibitors of N-formyl-l-methionyl-l-leucyl-l-phenylalanine-induced migration of human neutrophils…”

   “This study reveals that certain endogenous lipids, phytocannabinoids and related ligands are potent inhibitors of human neutrophil migration, and it implicates a novel pharmacological target distinct from cannabinoid CB1 and CB2 receptors; this target is antagonized by the endogenous compound N-arachidoloyl l-serine. These findings corroborate the emerging clinical and animal model data demonstrating that the nonpsychoactive phytocannabinoid, CBD and its structural analogs are effective in alleviating arthritis. Furthermore, our findings have implications for the potential pharmacological manipulation of elements of the endocannabinoid system for the treatment of various inflammatory conditions.”

http://molpharm.aspetjournals.org/content/73/2/441.long

Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels.

Abstract

“The molecular mechanism of action of Delta(9)-tetrahydrocannabinol (THC), the psychotropic constituent of Cannabis, has been a puzzle during the three decades separating its characterization, in 1964, and the cloning, in the 1990s, of cannabinoid CB1 and CB2 receptors. However, while these latter proteins do mediate most of the pharmacological actions of THC, they do not seem to act as receptors for other plant cannabinoids (phytocannabinoids), nor are they the unique targets of the endogenous lipids that were originally identified in animals as agonists of CB1 and CB2 receptors, and named endocannabinoids. Over the last decade, several potential alternative receptors for phytocannabinoids, endocannabinoids, and even synthetic cannabimimetics, have been proposed, often based uniquely on pharmacological evidence obtained in vitro. In particular, the endocannabinoid anandamide, and the other most abundant Cannabis constituent, cannabidiol, seem to be the most “promiscuous” of these compounds. In this article, we review the latest data on the non-CB1, non-CB2 receptors suggested so far for endocannabinoids and plant or synthetic cannabinoids, and lay special emphasis on uncharacterized or orphan G-protein-coupled receptors as well as on transient receptor potential channels.”

http://www.ncbi.nlm.nih.gov/pubmed/19847654

The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin

  “Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (−)-trans9-tetrahydrocannabinol (Δ9-THC), (−)-cannabidiol (CBD) and (−)-trans9-tetrahydrocannabivarin (Δ9-THCV), interact with cannabinoid CB1 and CB2 receptors. Δ9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1– and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Δ9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Δ9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by Δ9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which Δ9-THC, CBD and Δ9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.”

“…cannabis is a source not only of Δ9-THC, CBD and Δ9-THCV but also of at least 67 other phytocannabinoids and as such can be regarded as a natural library of unique compounds. The therapeutic potential of many of these ligands still remains largely unexplored prompting a need for further preclinical and clinical research directed at establishing whether phytocannabinoids are indeed ‘a neglected pharmacological treasure trove’. As well as leading to a more complete exploitation of Δ9-THC and CBD as therapeutic agents and establishing the clinical potential of Δ9-THCV more clearly, such research should help to identify any other phytocannabinoids that have therapeutic applications per se or that constitute either prodrugs from which semisynthetic medicines might be manufactured or lead compounds from which wholly synthetic medicines might be developed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219532/

Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications.

Abstract

“Naturally occurring cannabinoids (phytocannabinoids) are biosynthetically related terpenophenolic compounds uniquely produced by the highly variable plant, Cannabis sativa L. Natural and synthetic cannabinoids have been extensively studied since the discovery that the psychotropic effects of cannabis are mainly due to Delta(9)-THC. However, cannabinoids exert pharmacological actions on other biological systems such as the cardiovascular, immune and endocrine systems. Most of these effects have been attributed to the ability of these compounds to interact with the cannabinoid CB1 and CB2 receptors. The FDA approval of Marinol, a product containing synthetic Delta(9)-THC (dronabinol), in 1985 for the control of nausea and vomiting in cancer patients receiving chemotherapy, and in 1992 as an appetite stimulant for AIDS patients, has further intensified the research interest in these compounds. This article reviews patents (2003-2007) that describe methods for isolation of cannabinoids from cannabis, chemical and chromatographic methods for their purification, synthesis, and potential therapeutic applications of these compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/19519560

Fungal biotransformation of cannabinoids: potential for new effective drugs.

Abstract

“Phytocannabinoids from the plant Cannabis sativa induce a variety of physiological and pharmacological responses in living systems, including anti-inflammatory, antinociceptive, anti-ulcer and antitumor activities. The discovery of the cannabinoid receptors CB1 and CB2 led to the development of agonists and antagonists of these receptors for the treatment of a variety of diseases. Nabilone, a synthetic derivative of Delta9-tetrahydrocannabinol (Delta9-THC), which is the main natural psychotropic constituent of C sativa, was approved by the US FDA for the treatment of nausea and as an anti-emetic for patients undergoing chemotherapy. Delta9-THC and related cannabinoids are involved in a variety of signal transduction pathways; thus, reducing or removing the psychotropic effects of these compounds would enhance their therapeutic spectra. Compound synthesis and qualitative SAR studies are time-consuming activities; however, microbes are effectively the most inventive synthetic chemists because of their metabolic plasticity. This review discusses the potential of C sativa mycoflora, which is pathogenic as well as endophytic, to remove the psychotropic effects of Delta9-THC and related cannabinoids, and describes the development of a model system for the rapid and cost-effective commercial production of cannabinoids through fermentation pathways.”

http://www.ncbi.nlm.nih.gov/pubmed/19333876

Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non-Small Cell Lung Cancer Growth and Metastasis

“Cannabinoid receptors are expressed in human lung cancers”

 

  “Recently, CB1 and CB2 have been shown to be overexpressed on tumor cells compared to normal cells in various types of cancers, such as breast and liver, and therefore could be used as novel targets for cancer. In addition, several cannabinoids, including THC and cannabidiol, synthetic cannabinoid-agonists JWH-133, Win55,212-2, were shown to inhibit tumor growth and progression of several types of cancers, including glioma, glioblastoma multiforme, breast, prostate, colon carcinomas, leukemia and lymphoid tumors.”

“There are three general types of cannabinoids: phytocannabinoids, THC and cannabidiol, are derived from plants; endogenous cannabinoids, 2AG and AEA, which are produced inside the body; and synthetic cannabinoids, JWH-133/JWH-015, CP-55 and Win55,212-2.”

“Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC…”

“These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025486/