“Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded-access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016.
Tag Archives: CBD
Composition and Use of Cannabis Extracts for Childhood Epilepsy in the Australian Community
“Cannabis chemical THC could be missing ‘piece to the puzzle’ in treating kids with epilepsy” http://www.abc.net.au/news/2018-07-05/epilepsy-treatment-cannabis-chemical-thc/9944878
The protocol for the Cannabidiol in children with refractory epileptic encephalopathy (CARE-E) study: a phase 1 dosage escalation study.
“Initial studies suggest pharmaceutical grade cannabidiol (CBD) can reduce the frequency of convulsive seizures and lead to improvements in quality of life in children affected by epileptic encephalopathies. With limited access to pharmaceutical CBD, Cannabis extracts in oil are becoming increasingly available. The primary aims of the study presented in this protocol are (i) To determine whether CBD enriched Cannabis extract is safe and well-tolerated for pediatric patients with refractory epilepsy, (ii) To monitor the effects of CBD-enriched Cannabis extract on the frequency and duration of seizure types and on quality of life.
DISCUSSION:
This paper describes the study design of a phase 1 trial of CBD-enriched Cannabis herbal extract in children with treatment-resistant epileptic encephalopathy. This study will provide the first high quality analysis of safety of CBD-enriched Cannabis herbal extract in pediatric patients in relation to dosage and pharmacokinetics of the active cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/29981580 “Children with epileptic encephalopathies resistant to standard therapy are at considerable risk for long-term neurocognitive impairment and poor quality of life. CBD-enriched Cannabis based therapies have been shown in several studies to provide a reduction in seizure frequencies and improvements in sleep patterns, mood, and alertness.” https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-018-1191-y]]>Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors.
“We sought to understand why (-)-cannabidiol (CBD) and (-)-cannabidiol-dimethylheptyl (CBD-DMH) exhibit distinct pharmacology, despite near identical structures.
KEY RESULTS:
At CB1R, CBD was a negative allosteric modulator (NAM) and CBD-DMH was a mixed agonist/positive allosteric modulator. CBD and Org27569 shared multiple interacting residues in the antagonist-bound model of CB1R (5TGZ), but shared a binding site with CP55,940 in the agonist-bound model of CB1R (5XRA). The binding site for CBD-DMH in the CB1R models overlapped with CP55,940 and Org27569. At CB2R, CBD was a partial agonist, and CBD-DMH was a positive allosteric modulator of cAMP modulation, but a NAM of βarrestin1 recruitment. CBD, CP55,940, and SR144528 shared a binding site in the CB2R models that was separate from CBD-DMH.CONCLUSION AND IMPLICATIONS:
The pharmacological activity of CBD and CBD-DMH in HEK293A cells and their modelled binding sites at CB1R and CB2R may explain their in vivo effects and illuminates the difficulties associated with the development of allosteric modulators for CB1R and CB2R.” https://www.ncbi.nlm.nih.gov/pubmed/29981240 https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14440]]>Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test.
RESULTS:
Systemic cannabidiol administration induced antidepressant-like effects and increased BDNF levels in the dorsal hippocampus. Rapamycin, but not K252a, injection into the dorsal hippocampus prevented the antidepressant-like effect induced by systemic cannabidiol treatment (10 mg/kg). Differently, hippocampal administration of cannabidiol (10 nmol/0.2 µL) reduced immobility time, an effect that was blocked by both rapamycin and K252a local microinjection.CONCLUSION:
Altogether, our data suggest that the hippocampal BDNF-TrkB-mTOR pathway is vital for cannabidiol-induced antidepressant-like effect when the drug is locally administered. However, other brain regions may also be involved in cannabidiol-induced antidepressant effect upon systemic administration.” https://www.ncbi.nlm.nih.gov/pubmed/29968502 http://journals.sagepub.com/doi/abs/10.1177/0269881118784877?journalCode=jopaGPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol.
“The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions.
Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12.
This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer’s disease, Parkinson’s disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.”
https://www.ncbi.nlm.nih.gov/pubmed/29941868
https://www.nature.com/articles/s41401-018-0031-9
“Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) (nabiximols or Sativex®) is an oromucosal spray formulation containing THC and CBD at an approximately 1:1 fixed ratio. Its administration for the treatment of pain in patients with multiple sclerosis (MS) has been established.
MS patients generally complain of different kinds of pain, including spasticity-related and neuropathic pain. In this study, we compared and evaluated pain modulation and thermal/pain threshold of MS patients before and after THC/CBD administration.
Patients reported a significant reduction in pain.
Our results indicate that Sativex® therapy provides pain relief in MS patients and suggest that it might modulate peripheral cold-sensitive TRP channels.”
“Cannabidiol (CBD) is a non-psychotomimetic compound of the
“Hallmark features of acute kidney injury (AKI) include mobilization of immune and inflammatory mechanisms culminating in tissue injury. Emerging information indicates heterogeneity of neutrophils with pro- and anti-inflammatory functions (N1 and N2, respectively). Also, regulatory T-17 (Treg17) cells curtail Th-17-mediated pro-inflammatory responses. However, the status of Treg17 cells and neutrophil phenotypes in AKI are not established.
Further,