The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

“The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles.”

http://www.ncbi.nlm.nih.gov/pubmed/27398024

Inhibition of the cataleptic effect of tetrahydrocannabinol by other constituents of Cannabis sativa L.

“Tetrahydrocannabinol (THC) induced catalepsy in mice, whereas a cannabis oil (6.68% w/w THC), four cannabinoids and a synthetic mixture did not. Cannabinol (CBN) and olivetol inhibited THC-induced catalepsy in the mornings and the evenings, but cannabidiol (CBD) exhibited this effect only in the evenings. A combination of CBN and CBD inhibited THC-induced catalepsy equal to that of CBN alone in the mornings, but this inhibition was greater than that produced by CBN alone in the evenings.”  http://www.ncbi.nlm.nih.gov/pubmed/2897447

Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis.

Related image

“Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson’s disease (PD). The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use.

The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress.

We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content.

… unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress.

We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27366949

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=10314&path[]=32486

Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids

“The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood.

We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ.

It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death.

Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective.

Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.”

http://www.nature.com/articles/npjamd201612

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells. Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons.” http://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/

Identification of Psychoactive Degradants of Cannabidiol in Simulated Gastric and Physiological Fluid

“The flowering plants of the genus Cannabis, which mainly comprises the sativa and indica species, have been recognized for medical treatment for millennia.

Although Cannabis contains nearly 500 compounds from 18 chemical classes, its physiological effects derive mainly from a family of naturally occurring compounds known as plant cannabinoids or phytocannabinoids. Of the more than 100 phytocannabinoids that have been identified in Cannabis, among the most important and widely studied are its main psychoactive constituent, Δ9-tetrahydrocannabinol (Δ9-THC), and the most important nonpsychoactive component, cannabidiol (CBD). Other biologically active phytocannabinoids that have been isolated in Cannabis include Δ8-THC, cannabinol, Δ9-tetrahydrocannabivarin, and cannabidivarin.

In recent research, orally administered cannabidiol (CBD) showed a relatively high incidence of somnolence in a pediatric population. Previous work has suggested that when CBD is exposed to an acidic environment, it degrades to Δ9-tetrahydrocannabinol (THC) and other psychoactive cannabinoids. To gain a better understanding of quantitative exposure, we completed an in vitro study by evaluating the formation of psychoactive cannabinoids when CBD is exposed to simulated gastric fluid (SGF).

SGF converts CBD into the psychoactive components Δ9-THC and Δ8-THC. The first-order kinetics observed in this study allowed estimated levels to be calculated and indicated that the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a physiological response. Delivery methods that decrease the potential for formation of psychoactive cannabinoids should be explored.

Despite persistent challenges with dosing and administration, CBD-based therapies have a good safety profile and a potential for efficacy in the treatment of a variety of medical conditions. The rapidly evolving sciences of drug delivery and cannabinoid pharmacology may soon lead to breakthroughs that will improve access to the benefits of this pharmacological class of agents. In addition, current technologies, such as transdermal-based therapy, may be able to eliminate the potential for psychotropic effects due to this acid-catalyzed cyclization by delivering CBD through the skin and into the neutral, nonreactive environment of the systemic circulation.”

http://online.liebertpub.com/doi/10.1089/can.2015.0004

Sativex Associated With Behavioral-Relapse Prevention Strategy as Treatment for Cannabis Dependence: A Case Series.

“The current lack of pharmacological treatments for cannabis dependence warrants the use of novel approaches and further investigation of promising pharmacotherapy.

In this case series, we assessed the use of self-titrated dosages of Sativex (1:1, Δ-tetrahydrocannabinol [THC]/cannabidiol [CBD] combination) and motivational enhancement therapy and cognitive behavioral therapy (MET/CBT) for the treatment of cannabis dependence among 5 treatment-seeking community-recruited cannabis-dependent subjects.

THC/CBD metabolite concentration indicated reduced cannabis use and compliance with medication.

CONCLUSIONS:

In summary, this pilot study found that with Sativex in combination with MET/CBT reduced cannabis use while preventing increases in craving and withdrawal in the 4 participants completing the study. Further systematic exploration of Sativex as a pharmacological treatment option for cannabis dependence should be performed.”

http://www.ncbi.nlm.nih.gov/pubmed/27261670

Industrial hemp decreases intestinal motility stronger than indian hemp in mice.

“Indian hemp has shown beneficial effects in various gastrointestinal conditions but it is not widely accepted due to high content of tetrahydrocannabinol resulting in unwanted psychotropic effects.

Since industrial hemp rich in cannabidiol lacks psychotropic effects the aim of research was to study the effects of industrial hemp on intestinal motility.

Although not completely without psychotropic activity cannabidiol could be a potential replacement for tetrahydrocannabinol.

Since industrial hemp infuse rich in cannabidiol reduces intestinal motility in healthy mice cannabidiol should be further evaluated for the treatment of intestinal hypermotility.”

http://www.ncbi.nlm.nih.gov/pubmed/23467947

The therapeutic use of cannabinoids: Forensic aspects.

“Since 2013 in the Italian market has been introduced the Nabiximols, a drug containing two of the main active cannabinoids: Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). This drug has been approved in Italy in the treatment of Multiple Sclerosis (MS). It is an oral spray formulation and each puff of 100μl contains 2.7mg of Δ9-THC and 2.5mg of CBD.

In the present study we analyzed urine and blood samples collected from a group of 20 patients treated with Nabiximols in order to evaluate: blood Δ9-THC concentrations in relation to the dose administered and the duration of treatment and the potentiality of this medication to be used for drug habit.

The study was conducted on a sample group of patients affected by MS, of both sexes, age: 49-61 years, treated with Nabiximols for short (28 days) or long-term.

The results of our study allow affirming that it is unlikely to use this medication for drug habit or to sale it in the black market because of the low blood concentrations available and of its high costs.

These statements were confirmed by: (a) the low Δ9-THC concentrations in the pharmaceutical formulation; (b) the low blood concentrations produced by Nabiximols administration, more than 10 times smaller than the blood concentrations known to produce psychotropic effects; (c) the presence of CBD (Δ9-THC natural antagonist); (d) the route of administration (inhaled, not smoked).”

http://www.ncbi.nlm.nih.gov/pubmed/27038587

Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation.

“∆9-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response. THC treatment (20 mg/kg) of C57BL/6 mice with DTH caused decreased swelling and infiltration of immune cells at the site of antigen rechallenge. Additionally, THC treatment decreased lymphocyte activation as well as Th1/Th17 lineage commitment, including reduced lineage-specific transcription factors and cytokines. Interestingly, while DTH caused an overexpression of miR-21, which increases Th17 differentiation via SMAD7 inhibition, and downregulation of miR-29b, an IFN-γ inhibitor, THC treatment reversed this microRNA (miR) dysregulation. Furthermore, when we transfected primary cells from DTH mice with miR-21 inhibitor or miR-29b mimic, as seen with THC treatment, the expression of target gene message was directly impacted increasing SMAD7 and decreasing IFN-γ expression, respectively. In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression.

KEY MESSAGES:

• THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.”

http://www.ncbi.nlm.nih.gov/pubmed/27038180

Techniques and technologies for the bioanalysis of Sativex®, metabolites and related compounds.

“Sativex® is an oromucosal spray indicated for the treatment of moderate-to-severe spasticity in multiple sclerosis and is also an effective analgesic for advanced cancer patients.

Sativex contains Δ9-tetrahydrocannabinol (THC) and cannabidiol in an approximately 1:1 ratio.

The increasing prevalence of medicinal cannabis products highlights the importance of reliable bioanalysis and re-evaluation of the interpretation of positive test results for THC, as legal implications may arise in workplace, roadside and sports drug testing situations. This article summarizes published research on the bioanalysis of THC and cannabidiol, with particular focus on Sativex.”

http://www.ncbi.nlm.nih.gov/pubmed/27005853