Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis.

Abstract

“This paper aims to evaluate the anti-emetic efficacy of cannabinoids in cancer patients receiving chemotherapy using a systematic review of literature searched within electronic databases such as PUBMED, EMBASE, PSYCINFO, LILACS, and ‘The Cochrane Collaboration Controlled Trials Register’. Studies chosen were randomized clinical trials comprising all publications of each database until December 2006. From 12 749 initially identified papers, 30 fulfilled the inclusion criteria for this review, with demonstration of superiority of the anti-emetic efficacy of cannabinoids compared with conventional drugs and placebo. The adverse effects were more intense and occurred more often among patients who used cannabinoids. Five meta-analyses were carried out: (1) dronabinol versus placebo [n=185; relative risk (RR)=0.47; confidence interval (CI)=0.19-1.16]; (2) Dronabinol versus neuroleptics [n=325; RR=0.67; CI=0.47-0.96; number needed to treat (NNT)=3.4]; (3) nabilone versus neuroleptics (n=277; RR=0.88; CI=0.72-1.08); (4) levonantradol versus neuroleptics (n=194; RR=0.94; CI=0.75-1.18); and (5) patients’ preference for cannabis or other drugs (n=1138; RR=0.33; CI=0.24-0.44; NNT=1.8). The superiority of the anti-emetic efficacy of cannabinoids was demonstrated through meta-analysis.”

http://www.ncbi.nlm.nih.gov/pubmed/18625004

Mechanism of action of cannabinoids: how it may lead to treatment of cachexia, emesis, and pain.

Image result for The Journal of Supportive Oncology

“Many patients with life-threatening diseases such as cancer experience severe symptoms that compromise their health status and deny them quality of life. Patients with cancer often experience cachexia, pain, and depression,which translate into an unacceptable quality of life. The discovery of the endocannabinoid system has led to a renewed interest in the use of cannabinoids for the management of nausea, vomiting, and weight loss arising either from cancer or the agents used to treat cancer. The endocannabinoid system has been found to be a key modulator of systems involved in pain perception, emesis, and reward pathways. As such, it represents a target for development of new medications for controlling the symptoms associated with cancer. Although the cannabinoid receptor agonist tetrahydrocannabinol and one of its analogs are currently the only agents approved for clinical use, efforts are under way to devise other strategies for activating the endocannabinoid system for therapeutic uses.”

http://www.ncbi.nlm.nih.gov/pubmed/15357514

Cannabis and endocannabinoid modulators: Therapeutic promises and challenges

Abstract

  “The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.”

Summary

“The discovery of an endocannabinoid signaling system has opened new possibilities for research into understanding the mechanisms of marijuana actions, the role of the endocannabinoid system in homeostasis, and the development of treatment approaches based either on the phytocannabinoids or novel molecules. CB1 agonists may have roles in the treatment of neuropathic pain, spasticity, nausea and emesis, cachexia, and potentially neuroprotection after stroke or head injury. Agonists and antagonists of peripheral CB receptors may be useful in the treatment of inflammatory and autoimmune disorders, as well as hypertension and other cardiovascular diseases. CB1 antagonists may find utility in management of obesity and drug craving. Other novel agents that may not be active at CB receptor sites, but might otherwise modify cannabinoid transport or metabolism, may also have a role in therapeutic modification of the endocannabinoid system. While the short and long term toxicities of the newer compounds are not known, one must expect that at least some of the acute effects (psychotropic effects; hypotension) may be shared by CB agonists. While there are few, long-term serious toxicities attributable to marijuana, extrapolation to newer and more potent agonists, antagonists, and cannabinoid system modulators cannot be assumed. CB1 agonists have the potential in animal models to produce drug preference and drug seeking behaviors as well as tolerance and abstinence phenomena similar to, though not generally as severe as those of other drugs of addiction. There is increasing evidence from human observations that withdrawal from the phytocannabinoids can produce an abstinence syndrome characterized primarily by irritability, sleep disturbance, mood disturbance, and appetite disturbance in chronic heavy users, therefore, such possible effects will need to be considered in the evaluation of newer shorter acting and more potent agonists.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544377/

An electrophysiological analysis of the anticonvulsant action of cannabidiol on limbic seizures in conscious rats.

Abstract

“The effects of cannabidiol (CBD) on electrically evoked kindled seizures were studied in conscious, unrestrained rats with chronically implanted cortical and limbic electrodes, and the results were compared with those of delta 9-tetrahydrocannabinol (delta 9-THC), phenytoin (PHT), and ethosuximide (ESM). All drugs were anticonvulsant, but there were marked differences in their effects on afterdischarge (AD) threshold, duration, and amplitude. CBD, like PHT and delta 9-THC, elevated the AD threshold; in contrast, ESM decreased the threshold but suppressed AD spread. CBD, however, also resembled ESM inasmuch as both drugs decreased AD duration and amplitude. Electrophysiologically, the antiseizure effects of CBD were a combination of those of PHT and ESM. The combination of effects may account for the observation that CBD was the most efficacious of the drugs tested against limbic ADs and convulsions. Other properties of CBD were also noted: For example, compared with delta 9-THC, it is a much more selective anticonvulsant vis-à-vis motor toxicity. CBD also lacks the CNS excitatory effects produced by delta 9-THC, PHT, and ESM. These characteristics, combined with its apparently unique set of electrophysiological properties, support the suggestion that CBD has therapeutic potential as an antiepileptic.”

http://www.ncbi.nlm.nih.gov/pubmed/477630

Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures.

    “Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazole-induced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention… These results extend the anti-convulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.”

http://www.ncbi.nlm.nih.gov/pubmed/22520455

Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo

“CBD is the major nonpsychoactive component of Cannabis sativa whose structure was first described by Mechoulam and Shvo (1963); CBD has recently attracted renewed interest for its therapeutic potential in a number of disease states. CBD has been proposed to possess anticonvulsive, neuroprotective, and anti-inflammatory properties in humans.”

 “Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model…. These findings suggest that CBD acts, potentially in a CB1 receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.”

“In conclusion, our data in separate in vitro models of epileptiform activity and, in particular, the beneficial reductions in seizure severity caused by CBD in an in vivo animal model of generalized seizures suggests that earlier, small-scale clinical trials for CBD in untreated epilepsy warrant urgent renewed investigation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819831/

Δ⁹-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats.

“PURPOSE:

We assessed the anticonvulsant potential of the phytocannabinoid Δ⁹-tetrahydrocannabivarin (Δ⁹-THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats.”

“DISCUSSION:

These data demonstrate that Δ⁹-THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor-mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states.”

http://www.ncbi.nlm.nih.gov/pubmed/20196794

On the application of cannabis in paediatrics and epileptology.

Abstract

“An initial report on the therapeutic application of delta 9-THC (THC) (Dronabinol, Marinol) in 8 children resp. adolescents suffering from the following conditions, is given: neurodegenerative disease, mitochondriopathy, posthypoxic state, epilepsy, posttraumatic reaction. THC effected reduced spasticity, improved dystonia, increased initiative (with low dose), increased interest in the surroundings, and anticonvulsive action. The doses ranged from 0.04 to 0.12 mg/kg body weight a day. The medication was given as an oily solution orally in 7 patients, via percutaneous gastroenterostomy tube in one patient. At higher doses disinhibition and increased restlessness were observed. In several cases treatment was discontinued and in none of them discontinuing resulted in any problems. The possibility that THC-induced effects on ion channels and transmitters may explain its therapeutic activity seen in epileptic patients is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/15159680

Endocannabinoids and Their Implications for Epilepsy

“This review covers the main features of a newly discovered intercellular signaling system in which endogenous ligands of the brain’s cannabinoid receptors, or endocannabinoids, serve as retrograde messengers that enable a cell to control the strength of its own synaptic inputs. Endocannabinoids are released by bursts of action potentials, including events resembling interictal spikes, and probably by seizures as well. Activation of cannabinoid receptors has been implicated in neuroprotection against excitotoxicity and can help explain the anticonvulsant properties of cannabinoids that have been known since antiquity.”

“Cannabis in its various forms, including marijuana and hashish, is produced from the flowers and leaves of the hemp plant, Cannabis sativa. Through their primary psychoactive ingredient, Δ9-tetrahydrocannabinol (THC), these drugs affect the central nervous system by activating specific membrane-bound receptors. The primary brain receptors, cannabinoid receptors type 1 (CB1), are G protein–coupled, seven-transmembrane domain proteins that share numerous similarities with heterotrimeric G protein–coupled receptors for conventional neurotransmitters such as γ-aminobutyric acid (GABA) and glutamate. The CB1s bind THC with a high degree of selectivity and are heterogeneously distributed throughout the brain. Inasmuch as THC is a plant-derived compound not produced in mammals, endogenous ligands must exist for the cannabinoid receptor, that is, endocannabinoids. Indeed, several endogenous ligands for CB1 have been discovered, with anandamide being the first. Anandamide and 2-arachidonoyl glycerol (2-AG), are thought to be the major brain endocannabinoids, with regional differences in which one or the other predominates. Endocannabinoids have been strongly implicated in a growing variety of physiologic phenomena, including regulation of eating, anxiety, pain, extinction of aversive memories, and neuroprotection. Potent agonists and antagonists for CB1 exist and may serve as the foundation of new therapeutic strategies for treating pathologies. The voluminous work summarized here has been extensively covered in recent reviews on cannabinoid neurochemistry and pharmacology as well as neurophysiology. This review focuses on the neurophysiology of the endocannabinoid systems.”

“Conclusion

From what is known about their synthesis and release, endocannabinoids should be produced under many conditions of increased neuronal excitability and specific intercellular signaling. For example, an epileptic seizure, with its large swings in transmembrane voltage, increases in intracellular calcium, and marked release of neurotransmitters, such as acetylcholine and glutamate, should prominently release endocannabinoids. Indeed, seizures induced by kainic acid (a glutamate agonist) increase hippocampal levels of anandamide in normal and wild-type mice. Intriguingly, CB1 knockout mice and normal mice treated with a CB1 antagonist had more pronounced seizures and more severe excitotoxic cell death than untreated normal mice. Although the detailed mechanisms of neuroprotection have not been worked out, the rapid increases in expression of the immediate early genes, c-fos and zipf268, and subsequent increase in brain-derived neurotrophic factor (BDNF) normally induced by kainic acid, were absent in the CB1 knockout mice. The results complement previous evidence that exogenous cannabinoids can be neuroprotective and show that CB1 activation by seizure-induced release of endocannabinoids also is normally neuroprotective.”

“The important new directions being opened by investigations of endocannabinoids underscore the prescient opinion of Robert Christison, who, in 1848, noting its various beneficial effects, argued that cannabis “is a remedy which deserves a more extensive inquiry…””

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176361/