“Evidence obtained in recent decades has demonstrated that the brain still matures in adolescence. Changes in neural connectivity occur in different regions, including cortical and subcortical structures, which undergo modifications in white and gray matter densities. These alterations concomitantly occur in some neurotransmitter systems and hormone secretion, which markedly influence the refinement of certain brain areas and neural circuits. The immaturity of the adolescent brain makes it more vulnerable to the effects of alcohol and drug abuse, whose use can trigger long-term behavioral dysfunction. This article reviews the action of alcohol and drug abuse (cannabis, cocaine, opioids, amphetamines, anabolic androgenic steroids) in the adolescent brain, and their impact on both cognition and behavioral dysfunction, including predisposition to drug abuse in later life. It also discusses recent evidence that indicates the role of the neuroimmune system response and neuroinflammation as mechanisms that participate in many actions of ethanol and drug abuse in adolescence, including the neurotoxicity and alterations in neurocircuitry that contribute to the dysfunctional behaviors associated with addiction. The new data suggest the therapeutic potential of anti-inflammatory targets to prevent the long-term consequences of drug abuse in adolescence.” https://www.ncbi.nlm.nih.gov/pubmed/30468786 https://www.sciencedirect.com/science/article/pii/S073657481830251X?via%3Dihub
Tag Archives: therapeutic
The endocannabinoid signaling system in cancer
“Changes in lipid metabolism are intimately related to cancer. Several classes of bioactive lipids play roles in the regulation of signaling pathways involved in neoplastic transformation and tumor growth and progression. The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer. This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancer pathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters. We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer. We also discuss the enzyme MAGL, a key player in endocannabinoid metabolism that was recently recognized as a marker of tumor lipogenic phenotype.” https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(13)00044-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614713000448%3Fshowall%3Dtrue]]>
The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.
“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.
The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.
According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”
https://www.ncbi.nlm.nih.gov/pubmed/30427077 https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042]]>Cannabis, cannabinoids and the endocannabinoid system – is there therapeutic potential for inflammatory bowel disease?
“Cannabis sativa and its extracts have been used for centuries both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date. The largest study to date being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.”
Cannabis Therapeutics and the Future of Neurology.
“Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with poor prognosis and inadequate therapeutic outcome. This contribution reports the use of a
“The therapeutic effects of
“Cannabinoids are emerging as promising antitumor drugs. However, complete tumor eradication solely by cannabinoid therapy remains challenging. In this study, we developed a far-red light activatable cannabinoid prodrug, which allows for tumor-specific and combinatory cannabinoid and photodynamic therapy. This prodrug consists of a phthalocyanine photosensitizer (PS), reactive oxygen species (ROS)-sensitive linker, and cannabinoid. It targets the type-2 cannabinoid receptor (CB2R) overexpressed in various types of cancers. Upon the 690-nm light irradiation, the PS produces cytotoxic ROS, which simultaneously cleaves the ROS-sensitive linker and subsequently releases the cannabinoid drug. We found that this unique multifunctional prodrug design offered dramatically improved therapeutic efficacy, and therefore provided a new strategy for targeted, controlled, and effective antitumor cannabinoid therapy.”
“Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss.
The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation – one of the hallmarks of AD -, and on the density of synaptic proteins.
Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ).
This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.”