Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

Image result for BMC Complement Altern Med.

“Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year.

Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies.

In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines.

Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations.

They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels.

CONCLUSIONS:

In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.”

http://www.ncbi.nlm.nih.gov/pubmed/27586579

“Different ethnic groups around the world use Cannabis sativa for smoking, preparing concoctions to treat diseases, and for various cultural purposes. It has been found to be effective against a variety of disorders including neurodegerative disorders, autoimmune diseases, and cancer. Cannabis sativa in particular cannabidiol, we propose it plays important role in helping the body fight cancer through inhibition of pain and cell growth.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009497/

Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model.

Image result for Genes (Basel).

“Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability.

The cognitive deficits in the mouse model for this disorder, the Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mouse, have been restored by different pharmacological approaches, among those the blockade of cannabinoid type 1 (CB1) receptor.

In this regard, our previous study showed that the CB1 receptor antagonist/inverse agonist rimonabant normalized a number of core features in the Fmr1 knockout mouse. Rimonabant was commercialized at high doses for its anti-obesity properties, and withdrawn from the market on the bases of mood-related adverse effects.

In this study we show, by using electrophysiological approaches, that low dosages of rimonabant (0.1 mg/kg) manage to normalize metabotropic glutamate receptor dependent long-term depression (mGluR-LTD). In addition, low doses of rimonabant (from 0.01 mg/kg) equally normalized the cognitive deficit in the mouse model of FXS.

These doses of rimonabant were from 30 to 300 times lower than those required to reduce body weight in rodents and to presumably produce adverse effects in humans. Furthermore, NESS0327, a CB1 receptor neutral antagonist, was also effective in preventing the novel object-recognition memory deficit in Fmr1 KO mice.

These data further support targeting CB1 receptors as a relevant therapy for FXS.”

http://www.ncbi.nlm.nih.gov/pubmed/27589806

From cannabis to cannabidiol to treat epilepsy, where are we?

Image result for Curr Pharm Des.

“Several antiepileptic drugs (AEDs), about 25, are currently clinically available for the treatment of patients with epilepsy. Despite this armamentarium and the many recently introduced AEDs, no major advances have been achieved considering the number of drug resistant patients, while many benefits have been indeed obtained for other clinical outcomes (e.g. better tolerability, less interactions).

Cannabinoids have long been studied for their potential therapeutical use and more recently phytocannabinoids have been considered a valuable tool for the treatment of several neurological disorders including epilepsy.

Among this wide class, the most studied is cannabidiol (CBD) considering its lack of psychotropic effects and its anticonvulsant properties.

Several preclinical studies have tried to understand the mechanism of action of CBD, which still remains largely not understood.

CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures; beneficial effects were reported also in animal models of epileptogenesis and chronic models of epilepsy,

There is indeed sufficient supporting data for clinical development and important antiepileptic effects and the currently ongoing clinical studies will permit the real usefulness of CBD and possibly other cannabinoids.

Undoubtedly, several issues also need to be addressed in the next future (e.g. better pharmacokinetic profiling). Finally, shading light on the mechanism of action and the study of other cannabinoids might represent an advantage for future developments.”

http://www.ncbi.nlm.nih.gov/pubmed/27587196

Selective modulator of cannabinoid receptor type 2 reduces memory impairment and infarct size during cerebral hypoperfusion and vascular dementia.

Image result for Curr Neurovasc Res.

“Vascular dementia is the highly devastating neurodegenerative disorder after Alzheimer’s disease (AD) and mainly found in aged people but the effectual therapeutic target is still not there.

Chronic cerebral hypoperfusion (CCH) has been broadly found in vascular dementia (VaD) patients. CCH is thought to link with neurodegenerative disorders and their subsequent cognitive deteriorate on.

This study has been framed to examine the role of a selective agonist of cannabinoid receptor type 2(CB2); 1-phenylisatin in CCH induced VaD.

These results indicate that 2VO induced CCH in rats, which was attenuated with the treatment of 1-phenylisatin.

Hence, it may be suggested that modulation of cannabinoid receptor may provide benefits in CCH as cognitive impairment and VaD.

Therefore, selective agonists of CB2 receptors may be a potential research target for the alleviation of VaD.”

http://www.ncbi.nlm.nih.gov/pubmed/27586843

The Influence of the CB1 Receptor Ligands on the Schizophrenia-Like Effects in Mice Induced by MK-801.

Image result for neurotoxicity research

“A growing body of psychiatric research has emerged, focusing on the role of endocannabinoid system in psychiatric disorders.

For example, the endocannabinoid system, via cannabinoid CB (CB1 and CB2) receptors, is able to control the function of many receptors, such as N-methyl-D-aspartate (NMDA) receptors connected strictly with psychosis or other schizophrenia-associated symptoms.

The aim of the present research was to investigate the impact of the CB1 receptor ligands on the symptoms typical for schizophrenia.

The present findings confirm that endocannabinoid system is able to modify a variety of schizophrenia-like responses, including the cognitive disturbances and hyperlocomotion in mice.

Antipsychotic-like effects induced by CB1 receptor antagonist, obtained in our research, confirm the potential effect of CB1 receptor blockade and could have important therapeutic implications on clinical settings, in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/27577742

Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study.

Image result for Diabetes Care

“Cannabidiol (CBD) and Δ9-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes.

RESULTS:

Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = -1.2 mmol/L; P < 0.05) and improved pancreatic β-cell function (HOMA2 β-cell function [ETD = -44.51 points; P < 0.01]), adiponectin (ETD = -5.9 × 106 pg/mL; P < 0.01), and apolipoprotein A (ETD = -6.02 μmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (-898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated.

CONCLUSIONS:

THCV could represent a new therapeutic agent in glycemic control in subjects with type 2 diabetes.”

http://www.ncbi.nlm.nih.gov/pubmed/27573936

Cannabinoid 2 receptor is a novel anti-inflammatory target in experimental proliferative vitreoretinopathy.

Image result for neuropharmacology journal

“Proliferative vitreoretinopathy (PVR) can develop after ocular trauma or inflammation and is a common complication of surgery to correct retinal detachment.

Currently, there are no pharmacological treatments for PVR.

Cannabinoids acting at cannabinoid 2 receptor (CB2R) can decrease inflammation and fibrosis.

The objective of this study was to examine the anti-inflammatory actions of CB2R as a candidate novel therapeutic target in experimental PVR.

In conclusion, our results indicate that intervention at early stage PVR with CB2R agonists reduces ocular inflammation and disease severity.

CB2R may represent a therapeutic target to prevent PVR progression and vision loss.”

http://www.ncbi.nlm.nih.gov/pubmed/27569993

Cannabinoids and post-traumatic stress disorder: clinical and preclinical evidence for treatment and prevention.

“There is substantial evidence from studies in humans and animal models for a role of the endocannabinoid system in the control of emotional states. Several studies have shown an association between exposure to trauma and substance use. Specifically, it has been shown that there is increased prevalence of cannabis use in post-traumatic stress disorder (PTSD) patients and vice versa.

Clinical studies suggest that PTSD patients may cope with their symptoms by using cannabis. This treatment-seeking strategy may explain the high prevalence of cannabis use among individuals with PTSD.

Preliminary studies in humans also suggest that treatment with cannabinoids may decrease PTSD symptoms including sleep quality, frequency of nightmares, and hyperarousal.

Studies in animal models have shown that cannabinoids can prevent the effects of stress on emotional function and memory processes, facilitate fear extinction, and have an anti-anxiety-like effect in a variety of tasks.

Moreover, cannabinoids administered shortly after exposure to a traumatic event were found to prevent the development of PTSD-like phenotype.

In this article, we review the existing literature on the use of cannabinoids for treating and preventing PTSD in humans and animal models.

There is a need for large-scale clinical trials examining the potential decrease in PTSD symptomatology with the use of cannabis.

In animal models, there is a need for a better understanding of the mechanism of action and efficacy of cannabis. Nevertheless, the end result of the current clinical and preclinical data is that cannabinoid agents may offer therapeutic benefits for PTSD.”

http://www.ncbi.nlm.nih.gov/pubmed/27551883

Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat.

“Essential tremor (ET) is a neurological disorder with unknown etiology. Its symptoms include cerebellar motor disturbances, cognitive and personality changes, hearing and olfactory deficits. Excitotoxic cerebellar climbing fibre hyperactivity may underlie essential tremor and has been emulated in rodents by systemic harmaline administration.

Cannabinoid receptor agonists can cause motor disturbances although there are also anecdotal reports of therapeutic benefits of cannabis in motor disorders. We set out to establish the effects of cannabinoid type 1 receptor agonism and antagonism in an established rodent model of ET using a battery of accepted behaviour assays in order to determine risk and therapeutic potential of endocannabinoid system modulation in ET.

Overall, harmaline induced robust tremor that was typically worsened across the measured behavioural domains by CB type 1 (CB1 ) receptor agonism but ameliorated by cannabinoid type 1 receptor antagonism.

CONCLUSIONS AND IMPLICATIONS:

These results provide the first evidence of effects of endocannabinoid system modulation on motor function in the harmaline model of essential tremor and suggest that CB1 receptor manipulation warrants clinical investigation as a therapeutic approach to protection against behavioural disturbances associated with essential tremor.”

http://www.ncbi.nlm.nih.gov/pubmed/27545646

Cannabinoids and the gut: new developments and emerging concepts.

“Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.”

https://www.ncbi.nlm.nih.gov/pubmed/20117132/