Orally Administered CBD/CBG Hemp Extract Reduces Severity of Ulcerative Colitis and Pain in a Murine Model

pubmed logo

“Background: Ulcerative colitis (UC) is an autoimmune disorder characterized by inflammation of the mucosa that gives rise to a disrupted epithelial morphology. Persistent or recurrent inflammation and the debilitating nature of the associated symptoms make treatment of UC challenging. Cannabinoids derived from Cannabis sativa L. have been used for treatment of gastrointestinal disorders due to the wide-ranging therapeutic benefits of these compounds. 

Methods: We evaluated a commercial hemp extract, high in cannabigerol (CBG) and cannabidiol (CBD), as a novel treatment for UC symptoms using the dextran sodium sulfate (DSS) model in mice. Hemp extract was administered via two different routes of administration, intraperitoneal (i.p) and oral (p.o). 

Results: Specifically, we observed that cannabinoid treatment reduced damage to the colonic epithelium. We also observed that CBG/CBD rich hemp extracts help reduce pain-related responses in these animals. 

Conclusions: Together, the data suggest that cannabinoid administration has the potential to be an effective alternate therapeutic option for UC management.”

https://pubmed.ncbi.nlm.nih.gov/40943856/

“Our current findings suggest that minor cannabinoids, particularly CBD and CBG, may prove to be useful, novel therapies for treating IBD. These findings are important because patients already report using cannabis and cannabinoid-based products for managing their symptoms, despite little clinical data to support the use of high-THC products for treating IBD.

In conclusion, our data suggest that HE enriched for CBD and CBG may offer therapeutic potential as a treatment for IBD patients.”

https://www.mdpi.com/2077-0383/14/17/6095

Exploring therapeutic potential of Cannabis based therapy in autoimmune and rheumatic disorders

pubmed logo

“The medical use of cannabis is expanding across many countries, with some legalizing its use outright and others implementing medical licensure systems to approve treatment for eligible patients.

Despite this growing interest and utilization, there remains a lack of solid scientific evidence supporting its medical use, even though cannabis has been used therapeutically for thousands of years.

The goal of the following communication is to present updated data on the potential roles of cannabis-based treatments in various autoimmune and rheumatic conditions.

The information highlights that incorporating cannabis into the therapeutic armamentarium may offer benefits.

However, in many cases, despite encouraging perspectives and outcomes, the supporting evidence remains insufficient and requires further validation.

Due to social and legal barriers, the conduct of such rigorous clinical trials has been hindered, limiting the availability of high-quality evidence to guide medical practice.”

https://pubmed.ncbi.nlm.nih.gov/40907777/

https://www.sciencedirect.com/science/article/abs/pii/S1568997225001867?via%3Dihub

Cannabinoid receptor ligands with potential therapeutic applications and mechanisms of action: a versatile natural therapeutic agent

pubmed logo

“The endocannabinoid system (ECS) is a complex signaling network essential for regulating various physiological processes in the body. Selective cannabinoid receptor ligands have been developed to modulate specific ECS signaling pathways, offering potential therapeutic benefits. These ligands, with high selectivity and affinity for cannabinoid receptors, demonstrate potential in managing diverse medical conditions. Standardizing dosing is crucial to ensure reliable therapeutic effects, as cannabinoids may exhibit biphasic effects. Combination strategies involving both CB1 and CB2 receptor modulation show promise in managing complex conditions, including chronic pain, autoimmune disorders, and neurodegenerative diseases.”

https://pubmed.ncbi.nlm.nih.gov/40600897/

https://www.tandfonline.com/doi/full/10.1080/10286020.2025.2522396

Cannabidiol as an immune modulator: A comprehensive review

pubmed logo

“Cannabidiol (CBD), a non-psychoactive phytocannabinoid derived from Cannabis sativa, has emerged as a promising therapeutic agent due to its diverse pharmacological properties, including potent anti-inflammatory, neuroprotective, and immunomodulatory effects.

CBD modulates immune responses, including the regulation of T cell activity, induction of macrophage apoptosis, suppression of pro-inflammatory cytokines, and modulation of signaling pathways involved in inflammation and immune homeostasis. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science databases to identify relevant preclinical and clinical studies on CBD’s immunomodulatory effects.

Preclinical and clinical studies demonstrate its efficacy in treating autoimmune diseases such as Type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease, along with its potential in neuropathic pain and cancer therapy.

Recent advancements in nanotechnology-based delivery systems have further enhanced CBD’s therapeutic potential by improving its solubility, bioavailability, and targeted delivery, enabling innovative approaches for wound healing, inflammation management, and cancer treatment. However, challenges such as variability in immune responses, limited long-term safety data, and potential drug-drug interactions persist.

This review comprehensively examines CBD’s pharmacokinetics, pharmacodynamics, and immunomodulatory mechanisms, highlighting its clinical potential, existing limitations, and future directions in advancing its integration into precision medicine and immune regulation.”

https://pubmed.ncbi.nlm.nih.gov/40407987/

“Given the multifaceted pharmacological properties of CBD, it holds significant promise as a therapeutic agent.”

https://link.springer.com/article/10.1007/s44446-025-00005-7

Efficacy of a Neuroimmune Therapy Including Pineal Methoxyindoles, Angiotensin 1-7, and Endocannabinoids in Cancer, Autoimmune, and Neurodegenerative Diseases

pubmed logo

“Purpose: Recent advancements in psycho-neuro-endocrine-immunology indicate that numerous noncommunicable diseases (NCDs) originate from disruptions in the cytokine immune network, resulting in chronic inflammatory responses. This persistent low-degree inflammation is attributed to deficiencies in crucial endogenous anti-inflammatory neuroendocrine systems, including the pineal gland, the endocannabinoid system, and the angiotensin-converting enzyme 2 / angiotensin 1-7 axis.

The administration of pineal methoxyindoles (melatonin, 5-methoxytryptamine), cannabinoids, and angiotensin 1-7 may entail potential therapeutic benefits for NCDs, particularly for patients who do not respond to conventional treatments.

Patients and methods: This study evaluates the safety and efficacy of a neuroimmune regimen comprising melatonin (100 mg/day at night), 5-methoxytryptamine (30 mg in the early afternoon), angiotensin 1-7 (0.5 mg twice daily), and cannabidiol (20 mg twice daily) in 306 patients with NCDs, including advanced cancer, autoimmune diseases, neurodegenerative disorders, depression, and cardiovascular disease.

Results: The neuroimmune regimen successfully halted cancer progression in 68% of cancer patients, who also reported improvements in mood, sleep, and relief from anxiety, pain, and fatigue. In patients with autoimmune diseases, the treatment effectively controlled the disease process, remarkable in cases of multiple sclerosis. Additionally, positive outcomes were observed in patients with Parkinson’s disease, Alzheimer’s disease, and depression.

Conclusion: Randomized controlled trials are required to assess this therapeutic approach for NCDs that includes endogenous neuroendocrine molecules regulating immune responses in an anti-inflammatory manner.”

https://pubmed.ncbi.nlm.nih.gov/40330271/

“This study highlights the potential of leveraging endogenous molecules to treat NCDs by modulating cell proliferation, inflammation, immune responses, metabolism, and neurological functions. The findings suggest that a neuroimmune regimen incorporating melatonin, angiotensin 1–7, and other bioactive compounds could offer a low-cost, minimally toxic therapeutic approach.”

https://www.dovepress.com/efficacy-of-a-neuroimmune-therapy-including-pineal-methoxyindoles-angi-peer-reviewed-fulltext-article-CIA

Cannabinoids as Multitarget Drugs for the Treatment of Autoimmunity in Glaucoma

pubmed logo

“Diseases of multifactorial origin like neurodegenerative and autoimmune diseases require a multitargeted approach.

The discovery of the role of autoimmunity in glaucoma and retinal ganglionic cell (RGC) death has led to a paradigm shift in our understanding of the etiopathology of glaucoma. Glaucoma can cause irreversible vision loss that affects up to an estimated 3% of the population over 40 years of age. The current pharmacotherapy primarily aims to manage only intraocular pressure (IOP), a modifiable risk factor in the glaucomatous neurodegeneration of RGCs. However, neurodegeneration continues to happen in normotensive patients (where the IOP is below a reference value), and the silent nature of the disease can cause significant visual impairment and take a massive toll on the healthcare system.

Cannabinoids, although known to reduce IOP since the 1970s, have received renewed interest due to their neuroprotective, anti-inflammatory, and immunosuppressive effects on autoimmunity. Additionally, the role of the gut-retina axis and abnormal Wnt signaling in glaucoma makes cannabinoids even more relevant because of their action on multiple targets, all converging in the pathogenesis of glaucomatous neurodegeneration. Cannabinoids also cause epigenetic changes in immune cells associated with autoimmunity.

In this Review, we are proposing the use of cannabinoids as a multitargeted approach for treating autoimmunity associated with glaucomatous neurodegeneration, especially for the silent nature of glaucomatous neurodegeneration in normotensive patients.”

https://pubmed.ncbi.nlm.nih.gov/40242585/

https://pubs.acs.org/doi/10.1021/acsptsci.4c00583

Patient-Reported Outcomes of Pain, Stiffness, and Fatigue Reduction in Rheumatoid and Psoriatic Arthritis With Cannabinoid Use

pubmed logo

“Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are autoimmune conditions that can progressively destroy joints, causing chronic, often debilitating pain, and drastically affecting the quality of life. Novel pharmaceutical remedies have recently been developed, which allow for better symptom management. However, the complex pain experienced is challenging to control fully, leading this patient population to seek alternative treatments.

Though cannabis has been legalized for medical use in most states in the United States, the safety and efficacy of its use in inflammatory arthritis have still not been satisfactorily established. We conducted a cross-sectional study on patients with RA and PsA who visited a rheumatology outpatient clinic from October 2019 to March 2020.

We conducted a brief, voluntary, and anonymous Qualtrics survey of specific questions regarding their use of cannabinoids and their forms, sources, methods, side effects, and perceived efficacy. The survey initially involved 302 eligible candidates, but only 290 patients completed it. Among them, 84.9% (n, 247) reported a diagnosis of RA, while 15.1% (n, 44) reported PsA. Demographically, 82.3% (n, 238) were female, and 17.7% (n, 52) were male, with mean ages of 57.1 years for RA and 56.2 years for PsA.

Around 16.95% (n=40) of RA and 11.63% (n=5) of PsA patients reported cannabinoid use, primarily inhaled for RA and topical/liquid for PsA.

Post-cannabis use, a significant decrease in pain scale was noted (mean difference: 2.267, p < 0.001), with improvements in stiffness, fatigue, and swelling reported. Side effects were minimal, and most patients were willing to discuss cannabinoid treatment with their physician (80.9% RA [n=199], 86.4% PsA [n=38]).

In conclusion, our study indicates that a notable portion of the patients with inflammatory arthritis including RA and PsA reported a history of use or ongoing cannabinoid use. Furthermore, the patients reported a short-term reduction of pain, fatigue, and swelling, though it is unclear if these findings are related to a placebo effect.”

https://pubmed.ncbi.nlm.nih.gov/39583459/

“In summary, our study sheds light on the self-utilization and the reported effectiveness of cannabinoids in managing symptoms associated with RA and PsA. Our data indicate that the reduction in pain was statistically significant, suggesting cannabinoids may help alleviate the pain associated with these conditions.”

https://www.cureus.com/articles/204984-patient-reported-outcomes-of-pain-stiffness-and-fatigue-reduction-in-rheumatoid-and-psoriatic-arthritis-with-cannabinoid-use#!/

The Perspective of Cannabidiol in Psoriasis Therapy

pubmed logo

“Psoriasis is a chronic skin condition that can significantly impact the quality of life of those affected. As an autoimmune disease, it can lead to itchy, painful, and scaly patches on the skin. Although various treatments, including topical creams, phototherapy, and systemic medications, are currently available, they may not always offer effective relief and can have side effects. Researchers have thus been exploring the potential benefits of non-psychoactive compounds such as CBD, found in Cannabis sativa plants, for treating psoriasis. CBD treatment may reduce inflammation, oxidative stress, itching, abnormal proliferation of keratinocytes, and may increase hydration. This review aims to provide an overview of the existing literature on the potential uses of CBD for psoriasis treatment.”

https://pubmed.ncbi.nlm.nih.gov/38911997/

https://www.dovepress.com/the-perspective-of-cannabidiol-in-psoriasis-therapy-peer-reviewed-fulltext-article-PTT

Effectiveness, Safety and Patients’ Satisfaction of Nabiximols (Sativex®) on Multiple Sclerosis Spasticity and Related Symptoms in a Swiss Multicenter Study

pubmed logo

“Background: Cannabinoid oro-mucosal spray nabiximols is approved for patients with moderate to severe multiple sclerosis spasticity (MSS) resistant to other antispastic medications. Few real-world data are available on the effectiveness, safety and patients’ satisfaction in MS patients treated with nabiximols as monotherapy. 

Methods: To investigate the effectiveness, tolerability and satisfaction of nabiximols in a real-life multicentric Swiss cohort as monotherapy or with stable doses of other antispastic medications, and explore clinical features which may predict treatment response. The following data were collected at treatment start (baseline) and 12 weeks thereafter: Modified Ashworth scale (MAS), scores at numerical rating scales ranging from 0 (absent) to 10 (considerable) for effect on spasticity (sNRS), pain (pNRS), gait (gNRS), urinary symptoms (uNRS), tolerability (tNRS) as assessed by the treating neurologist, and overall treatment satisfaction (TsNRS) and tolerability (tNRS) as assessed by the patient. 

Results: Ninety-five patients (44 relapsing remitting, 37 secondary progressive and 14 primary progressive MS; median age = 53 (IQR 45-62); female 70%; median EDSS 6 (IQR 4-6), concomitant antispastic treatments in 54% of patients) were included. From baseline to week 12, median MAS score decreased from 3.0 to 2.0 (p < 0.001). Median scores of the each NRS also significantly decreased (p < 0.001 for all comparisons). At week 12, the median TsNRS and tTS scores were 8/10 (IQR: 6-9) and 9/10 (IQR: 7-10), respectively, and 93.7% of patients continued to use nabiximols at the average dose of six sprays/day. No clinical factors, including use of nabiximols as add on vs. monotherapy, were associated with responder status. 

Conclusions: Our first Swiss, multicentric, observational, real-life study supports and enhances previous finding of nabiximols as monotherapy and as add-on therapy, being an effective, safe and well-tolerated treatment option for resistant MS spasticity and spasticity-related symptoms (pain, bladder dysfunction and gait).”

https://pubmed.ncbi.nlm.nih.gov/38792448/

https://www.mdpi.com/2077-0383/13/10/2907

Selected cannabis cultivars modulate glial activation: in vitro and in vivo studies

pubmed logo

“Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation, demyelination and axonal loss. Cannabis, an immunomodulating agent, is known for its ability to treat MS effectively. However, due to variations in the profile of secondary metabolites, especially cannabinoids, among cannabis cultivars, the effectiveness of cannabis treatment can vary, with significant variability in the effects on different biological parameters. For screening available cultivars, cellular in vitro as well as pre-clinical in vivo assays, are required to evaluate the effectiveness of the wide range of chemical variability that exists in cannabis cultivars. This study evaluated comparatively three chemically diverse cannabis cultivars, CN2, CN4 and CN6, containing different ratios of phytocannabinoids, for their neuroinflammatory activity in MS model.

Materials and methods: In vitro experiments were performed with lipopolysaccharide (LPS)-activated BV-2 microglia and primary glial cells to evaluate the effect of different cannabis cultivars on nitric oxide (NO) and inflammatory cytokines, as well as inducible nitric oxide synthase (iNOS) protein expression. An in vivo experiment using the experimental autoimmune encephalomyelitis (EAE) MS model was conducted using Myelin oligodendrocyte glycoprotein (MOG) as the activating peptide. The cannabis extracts of the cultivars CN2, CN4, CN6 or vehicle, were intraperitoneally injected with clinical scores given based on observed symptoms over the course of study. At the end of the experiment, the mice were sacrificed, and splenocyte cytokine secretion was measured using ELISA. Lumbar sections from the spinal cord of treated MS mice were evaluated for microglia, astrocytes and CD4+ cells.

Results: Extracts of the CN2 cultivar contained tetrahydrocannabinolic acid (THCA) and tetrahydrocannabinol (THC) without cannabidiol (CBD), and a number of monoterpenes. CN4 contained cannabidiolic acid (CBDA) and tetrahydrocannabidiolic acid (THCA), with significant amounts of THC: CBD in a 1:1 ratio, as well as sesquiterpenes and some monoterpenes; and CN6 contained primarily CBDA and THCA, as well as THC and CBD in a 2:1 ratio, with some sesquiterpenes and no monoterpenes. All extracts were not cytotoxic in glial cells up to 50 µg/ml. Dose dependent inhibition of LPS-induced BV2 as well as primary microglial NO secretion confirmed the anti-inflammatory and anti-oxidative activity of the three cannabis cultivars. CN2 but not CN4 reduced both astrocytosis and microglial activation in lumbar sections of EAE mice. In contrast, CN4 but not CN2 significantly decreased the secretion of TNFα and Interferon γ (IFNγ) in primary splenocytes extracted from EAE mice.

Conclusions: While both cannabis cultivars, CN2 and CN4, significantly reduced the severity of the clinical signs throughout the course of the study, they modulated different inflammatory mediators and pathways, probably due to differences in their phytocannabinoid composition. This demonstrates the differential potential of cannabis cultivars differing in chemotype to regulate neuroinflammation and their potential to treat MS.”

https://pubmed.ncbi.nlm.nih.gov/38778343/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-024-00232-0