Cannabidiol ameliorates seizures and neuronal damage in ferric chloride-induced posttraumatic epilepsy by targeting TRPV1 channel

pubmed logo

“Ethnopharmacological relevance: Posttraumatic epilepsy (PTE) is an acquired epilepsy caused by traumatic brain injury (TBI). From Mesopotamian civilization to Eastern medical classics, the use of Cannabis for anticonvulsant purposes has spanned three millennia of medical history. As a non-psychoactive plant extract of Cannabis, cannabidiol (CBD) has attracted considerable attention in epilepsy-related treatment. However, whether CBD exhibits an anticonvulsant effect against PTE and its underlying molecular mechanisms remains to be elucidated.

Aim of the study: This study aims to investigate the anticonvulsant and neuroprotective effect of CBD on PTE, as well as its molecular mechanisms.

Methods: Ferric chloride (FeCl3)-induced PTE rat models were constructed in normal rats and brain-localized transient receptor potential vanilloid type 1 (TRPV1) overexpression rats. The anticonvulsant effects of CBD were evaluated by epileptic behavioral scoring and electroencephalogram (EEG) monitoring. The neuroprotective effect was measured by histopathological staining of the brain tissues. Immunofluorescence, western blot, q-PCR and Ca2+ fluorescence intensity detection were employed to investigate the mechanisms of CBD on PTE rats.

Results: CBD significantly reduced the seizure severity and brain damage in FeCl3-induced PTE rat models. Besides, EEG data showed decreased amplitude, total power, and spike wave discharges in PTE rats pretreated with CBD. Moreover, CBD suppressed the phosphorylation of heat shock factor 1 (HSF1) by targeting TRPV1, thereby specifically inhibiting the stress-induced heat shock protein 70 (HSP70) increase in the brain-localized TRPV1 overexpression rats.

Conclusion: CBD exerts an anticonvulsant and neuroprotective effect on PTE rats by regulating the TRPV1/HSF1/HSP70 pathway and may be a potential drug for the prophylactic treatment of PTE.”

https://pubmed.ncbi.nlm.nih.gov/40449694/

“CBD may be a potential drug for the prophylactic treatment of PTE.”

https://www.sciencedirect.com/science/article/abs/pii/S0378874125007597?via%3Dihub

The Anticonvulsant Effects of Different Cannabis Extracts in a Zebrafish Model of Epilepsy

pubmed logo

“Epilepsy is a widespread neurological disorder that remains a critical global public health challenge. While numerous antiepileptic drugs (AEDs) are available, many patients either fail to achieve adequate seizure control or experience significant side effects.

One promising alternative is pure cannabidiol (CBD), but using a whole cannabis extract may be equally effective and preferred for some patients.

In the current study, we employed the pentylenetetrazole (PTZ)-induced hyperactivity model in zebrafish to compare the effects of CBD with various cannabis extracts. We evaluated three cannabis strains, each subjected to three different extraction methods, and benchmarked the results against the commercially available AED valproic acid (VPA).

Our findings revealed that 5.7 µg/mL of CBD and 10 µg/mL of different extracts significantly reduced movement compared to PTZ and VPA. In addition, effective extracts produced effects similar to pure CBD despite containing much lower molecule levels.

These results reinforced and expanded previous evidence supporting the clinical potential of both CBD and whole cannabis extracts for seizure control while suggesting a possible entourage effect. Further research is necessary to determine which patients may benefit more from pure CBD versus those who might prefer whole cannabis extracts.”

https://pubmed.ncbi.nlm.nih.gov/40427547/

“In conclusion, our results validate and extend previous ones concerning the potential clinical effects of both CBD and whole cannabis extracts used for seizure control.”

https://www.mdpi.com/2218-273X/15/5/654

Cannabidiol Pretreatment Reduces Status Epilepticus and Glutamate Uptake Induced by Kainic Acid in Adult Zebrafish

pubmed logo

“Background: Epilepsy is a neurological chronic disorder that affects about 70 million people worldwide. Status epilepticus (SE) are neural disturbances that cause intense glutamatergic excitatory discharges that modulate changes in normal brain physiological activity. Cannabidiol (CBD) is the main nonpsychomimetic compound present in Cannabis sativa and exhibits a wide spectrum of neuroprotective properties. The use of zebrafish (Danio rerio) is regarded as an important alternative animal model for studies on seizures, as it has neuronal mechanisms similar to humans. 

Objective: This study aims to evaluate the effects of CBD on SE induced by kainic acid (KA) in zebrafish. 

Methods: Animals received CBD (5, 10, or 40 mg·L-1 tank water) for 24 h followed by KA administration (5 mg/kg intraperitoneally). The convulsive pattern of alterations was then assessed. After 12 h, cerebral glutamate transport and oxidative stress were also verified. 

Results: CBD at 5 and 40 mg·L-1 induced a significant decrease in the seizure intensity (26.1% and 29.9%) and an increase in the latency to reach SE (from 10.71 min to 17.5 and 25 min), respectively. In addition, CBD administration (40 mg·L-1) attenuated the decrease in cerebral glutamate transport following 12 h KA-induced seizure. The KA-induced seizure was also able to alter the oxidative stress parameters 2′,7′-dichlorofluorescin, and catalase activity. However, CBD (40 mg·L-1) did not influence these markers.

The present study indicates that CBD promotes a neuroprotective response against the epileptic profile in zebrafish. These findings contribute to the understanding of the influence of CBD on the modulation of excitatory/inhibitory disruption on zebrafish seizure.”

https://pubmed.ncbi.nlm.nih.gov/40354278/

https://www.liebertpub.com/doi/10.1089/can.2024.0189

Adjunctive use of cannabidiol in pediatric drug-resistant epilepsy: A retrospective multicenter analysis

pubmed logo

“Background: Epilepsy affects approximately 70 million people globally, with one-third experiencing drug-resistant epilepsy (DRE). Cannabidiol (CBD) has shown promise in reducing seizure frequency for specific epilepsy syndromes, though data for broader etiologies remain limited. The goal of the study is to evaluate the effectiveness of CBD as an adjunct treatment in the reduction of seizure frequency in DRE patients of various etiologies.

Methods: We conducted a retrospective chart review of patients with refractory epilepsy who received a CBD as an adjunct treatment at two tertiary care centers. Seizure frequency at the start of CBD treatment and at a minimum follow-up of 3 months was recorded. Epilepsy diagnosis was categorized into five groups: Focal/Multifocal Epilepsy, Primary Generalized Epilepsy, Lennox-Gastaut Syndrome, Dravet Syndrome, and Other Developmental and Epileptic Encephalopathies.

Results: Among all patients, 49 % achieved a ≤ 25 % reduction in seizures, while 5 % had a 26-50 % reduction, 21 % reached a 51-75 % reduction, 20 % experienced a 76-99 % reduction, and 5 % achieved near seizure freedom. There was a significant reduction in median seizure frequency from 30 at baseline to 8 post-treatment (p = 0.000). Significant reductions in seizure frequency were also observed within each diagnostic category.

Discussion: CBD has proven to be an effective adjunctive treatment for medically refractory epilepsy, showing significant efficacy across various epilepsy etiologies and genetic backgrounds. Its ability to reduce seizure frequency and the burden of anti-seizure medications (ASMs), especially in syndromes that are traditionally difficult to manage, highlights its value as an additional therapeutic option.”

https://pubmed.ncbi.nlm.nih.gov/40288063/

https://www.epilepsybehavior.com/article/S1525-5050(25)00165-9/abstract

Cannabidiol in Drug-Resistant Epilepsy (DRE) in Children: A Retrospective Study

pubmed logo

“Objectives: To describe the effectiveness and tolerability of cannabidiol (CBD) in children with drug-resistant epilepsy (DRE).

Methods: Records of children with DRE who received CBD for at least six months were reviewed. Reduction in seizure frequency [complete (> 90%), partial (30-90%), no response (< 30%)], parent reported adverse effects and discontinuation of CBD, if any, were noted.

Results: Records of 50 children with DRE (Lennox-Gastaut syndrome 32, Dravet syndrome 4, and Tuberous sclerosis complex 2), mean (SD) age 7.8 (4.3) years were reviewed. Complete, partial, and no response to CBD was seen in 10, 18 and 14 children; 8 became seizure-free. Eight children discontinued treatment due to lack of efficacy (n = 4), by increased adverse effects (n = 3) and aggravation of seizures (n = 1). Adverse effects were noted in 22 (44%), none required hospitalization.

Conclusion: Cannabidiol is a useful and safe add-on drug in children with DRE.”

https://pubmed.ncbi.nlm.nih.gov/40261499/

https://link.springer.com/article/10.1007/s13312-025-00075-9

UK Medical Cannabis Registry: A Clinical Outcomes Analysis for Epilepsy

pubmed logo

“Background: A third of epilepsy patients fail to enter seizure remission despite optimal therapeutic management. Cannabis-based medicinal products (CBMPs) have shown promise as a potential therapy. However, a paucity of high-quality literature regarding CBMPs’ efficacy and safety profile means further investigation is needed. The study aimed to examine changes in epilepsy-specific and general health-related quality of life (HRQoL) patient-reported outcome measures (PROMs) in individuals with treatment-resistant epilepsy.

Methods: A case series of patients with epilepsy from the UK Medical Cannabis Registry analyzed changes in Quality of Life in Epilpesy-31 (QOILE-31), Single-Item Sleep Quality Score (SQS), EQ-5D-5L, Generalized Anxiety Disorder-7 (GAD-7) and Patient Global Impression of Change (PGIC) between baseline, one, three, and six months. Adverse events (AEs) were collected and classified by severity. p < 0.050 was considered statistically significant.

Results: There were 134 patients included. Improvements were recorded from baseline to one, three, and six months in QOILE-31 and all HRQoL PROMs (p < 0.050). Forty patients (29.85%) reported a minimal clinically important difference in Quality of Life in Epilepsy-31 (QOLIE-31) at six months. There were 18 (13.43%) AEs reported by 5 (3.73%) patients, mainly mild and moderate.

Discussion: The proportion of patients achieving a clinically significant change is similar to existing CBMPs in epilepsy literature. AE incidence was lower than similar studies although this may be due to the large proportion (67.16%) of individuals who were not cannabis naïve.

Conclusion: Initiation of CBMPs was associated with an improvement across all PROMs. CBMPs were well tolerated across the cohort. However, randomized controlled trials are needed to help determine causality.”

https://pubmed.ncbi.nlm.nih.gov/40249168/

“Treatment with CBMPs was associated with an improvement in both epilepsy-specific and general HRQoL outcomes at one, three, and six months. This study shows the promising potential of CBMPs as an adjunctive treatment option in the management of TRE.”

https://onlinelibrary.wiley.com/doi/10.1002/brb3.70490

Cannabinoid Use in Pediatric Epilepsy

pubmed logo

“Cannabidiol has shown promising effects on reducing seizure frequency in children and adults with selected epilepsy syndromes. In this narrative brief review, we provide an update on the use of cannabidiol in pediatric epilepsy including the indications for its use, clinical efficacy, adverse effects, requirements for monitoring and regulations.”

https://pubmed.ncbi.nlm.nih.gov/40244307/

https://link.springer.com/article/10.1007/s13312-025-00015-7

The efficacy of cannabidiol for seizures reduction in pharmacoresistant epilepsy: a systematic review and meta-analysis

pubmed logo

“Background: Epilepsy is a neurological syndrome caused by excessive neuronal discharges, with a part of the patients being pharmacoresistant to the traditional treatment. Cannabidiol, a non-psychoactive component of Cannabis Sativa, shows promise as an alternative, but further research is needed to quantify its efficacy.

Methods: This literature systematic review was made following the PRISMA protocol guidelines. The Google Scholar, Scielo, and PubMed/MEDLINE databases were included using the descriptors “Cannabidiol”, “Epilepsy”, and “Drug Resistant Epilepsy”. This research was registered in the Prospero platform with the identification (CRD42024479643).

Results: A total of 1448 results were identified from the PubMed, Virtual Health Library, and Google Scholar databases. After applying exclusion criteria, six studies met the criteria for full-text evaluation and eligibility. The compiled analysis showed that the patients who received cannabidiol experienced a 41.0875% reduction in the total number of seizures, compared to an average reduction of 18.1% in placebo groups. This represents a 127% higher response rate for patients who received the intervention.

Conclusions: Given these results, it is possible to conclude that the therapeutic response of cannabidiol is worthy of consideration in new protocols and of being added to public healthcare systems for its antiepileptic potential. However, the high efficacy rate observed in the placebo group suggests that other methods of data collection analysis may be employed.”

https://pubmed.ncbi.nlm.nih.gov/40217555/

“Based on the results from the analyzed studies, it can be concluded that the addition of CBD to the treatment regimen for patients with pharmacoresistant epilepsy is beneficial in most cases. The doses of 10 mg/kg/day and 20 mg/kg/day were compared in 5 out of 6 studies, with a higher dose demonstrating superior seizure control. However, the lower dose also showed significant efficacy, making it a viable option for inclusion in treatment and guidelines as well.”

https://aepi.biomedcentral.com/articles/10.1186/s42494-024-00191-2

Optimization of seizure prevention by cannabidiol (CBD)

pubmed logo

“Objective: Cannabidiol (CBD) is one of the most prominent non-psychotropic cannabinoids with known therapeutic potentials. Based on its anti-seizure efficacy, the first cannabis derived pharmaceutical grade CBD-based medication was approved in the USA in 2018 for the treatment of seizures in patients 2 years and older. Despite the effectiveness in reducing seizures, there remain several major questions on the optimization of CBD therapy for epilepsy such as the optimal dosage, composition, and route of delivery, which are the main objective of this current study.

Methods: We evaluated the antiseizure effects of CBD through different compositions, routes of delivery, and dosages in a pre-clinical model. We used a kainic acid-induced epilepsy model in C57BL/6 mice, treated them with placebo and/or CBD through inhalation, oral, and injection (intraperitoneal) routes. We used CBD broad spectrum (inhaled and intraperitoneal) vs CBD isolate formulations. We employed the Racine scaling system to evaluate the severity of the seizures, flow cytometry for measuring immune biomarkers and neurotrophic factors, and histologic analysis to examine and compare the groups.

Results: Our findings showed that all forms of CBD reduced seizures severity. Among the combination of CBD tested, CBD broad spectrum via inhalation was the most effective in the treatment of epileptic seizures (p < 0.05) compared to other forms of CBD treatments.

Conclusion: Our data suggest that route and CBD formulations affect its efficacy in the prevention of epileptic seizures. Inhaled broad spectrum CBD showed a potential superior effect compared to other delivery routes and CBD formulations in the prevention of epileptic seizures, which warrants further research.”

https://pubmed.ncbi.nlm.nih.gov/40177581/

https://www.degruyterbrill.com/document/doi/10.1515/tnsci-2022-0362/html

[Real-life study with pharmaceutical cannabidiol in refractory epilepsy]

pubmed logo

“Pharmaceutical-grade cannabidiol (CBD) is an alternative treatment for patients with drug-resistant epilepsy (DRE). In 2022, the Italian Hospital of Buenos Aires implemented a non-medical change (NMC) of treatment, replacing one commercial pharmaceutical-grade CBD product with another, the latter also being the initial option for new patients.

Our objective was to evaluate the clinical outcomes of the commercial product change in this population.

Methods: Retrospective cohort of DRE patients who either switched from one commercial pharmaceutical-grade CBD product to another or started treatment with the new product. The clinical response was evaluated by changes in seizure frequency, perception of change with the Patient Global Impression of Change (PGIC) scale, and safety considering discontinuation and/or the presence of adverse effects.

Results: Nineteen patients were included, 12 in the change group and 7 in the new start group (7 pediatric and 12 adults). One patient discontinued treatment due to lack of response. Among those who completed follow-up, 8 (44%) reduced seizure frequency, 6 (33%) showed no change, and 4 (22%) increased seizure frequency. According to the PGIC scale, 9 (50%) remained unchanged, 5 (28%) reported barely noticeable changes, and 4 (22%) reported improvement. Adverse events were mild and transient.

Conclusion: The new commercial pharmaceutical-grade CBD product is a safe and valid option both for substitution and initial treatment in patients with DRE. During the treatment period, patients perceived stability or improvement according to the PGIC scale.”

https://pubmed.ncbi.nlm.nih.gov/40163830/