Deficient endocannabinoid signaling in the central amygdala contributes to alcohol dependence-related anxiety-like behavior and excessive alcohol intake.

“Negative emotional states that are associated with excessive alcohol intake, particularly anxiety-like states, have been linked to opponent processes in the central nucleus of the amygdala (CeA), affecting stress-related transmitters and monoamines. This study extends these observations to include endocannabinoid signaling in alcohol-dependent animals. Rats and mice were exposed to chronic intermittent alcohol with vapor inhalation or liquid diet to induce dependence. In vivo microdialysis was used to estimate interstitial concentrations of endocannabinoids [N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG)] and amino acids (glutamate and GABA) in rat CeA. Additionally, we evaluated the inhibition of endocannabinoids clearance enzymes [monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase] on anxiety-like behavior and alcohol consumption in alcohol-dependent rats and mice. Results revealed that alcohol dependence produced decreases in baseline 2-AG dialysate levels and increases in baseline levels of glutamate and GABA. Acute alcohol abstinence induced an enhancement of these dependence-induced effects and the levels of 2-AG and GABA were restored upon alcohol re-exposure. Additional studies showed that the increased CeA 2-AG levels induced by restraint stress and alcohol self-administration were blunted in alcohol-dependent rats. Pharmacological studies in rats and mice showed that anxiety-like behavior and alcohol consumption were increased in alcohol-dependent animals, and these behavioral effects were attenuated mainly by MAGL inhibitors [MJN110 (10 and 20 mg/kg) in rats and JZL184 (1 and 3 mg/kg) in mice]. The present results suggest a key role for endocannabinoid signaling in motivational neuroadaptations during alcohol dependence, in which a deficiency in CeA 2-AG signaling in alcohol-dependent animals is linked to stress and excessive alcohol consumption.” https://www.ncbi.nlm.nih.gov/pubmed/29748627 https://www.nature.com/articles/s41386-018-0055-3]]>

A Critical Systematic Review of Evidence for Cannabinoids in the Treatment of Schizophrenia

“Cannabinoids have an emerging evidence base as an effective treatment option in a number of medical conditions, including anorexia and intractable vomiting. It is well known that patients with schizophrenia are more likely to use cannabis; it has also been argued that this could be a way of self-treating adverse side effects (secondary to antipsychotics) in a group of people with schizophrenia. Therefore, studies have attempted to examine the use of cannabinoids in schizophrenia. Given the recent interest in the use of cannabinoids in general and the ensuing ethical debates, we systematically review the available literature on the use of four cannabinoids, namely delta-9-tetrahydrocannabinol, dronabinol, rimonabant, and cannabidiol, in the management of schizophrenia. We also offer suggestions for future research in this area.” https://www.healio.com/psychiatry/journals/psycann/2018-5-48-5/%7B04639e36-7fd1-4e31-aff2-7cea85ea3bc3%7D/a-critical-systematic-review-of-evidence-for-cannabinoids-in-the-treatment-of-schizophrenia]]>

Cannabinoids and gastrointestinal motility: Pharmacology, clinical effects, and potential therapeutics in humans.

“Cannabinoid agents and cannabis are frequently used for relief of diverse gastrointestinal symptoms.

PURPOSE:

The objective of this article is to increase the awareness of gastroenterologists to the effects of cannabinoids on gastrointestinal motility, as gastroenterologists are likely to encounter patients who are taking cannabinoids, or those with dysmotility that may be associated with cannabinoid mechanisms. The non-selective cannabinoid agonist, dronabinol, retards gastric emptying and inhibits colonic tone and phasic pressure activity. In summary, cannabinoid mechanisms and pharmacology are relevant to the current and future practice of clinical gastroenterology.” https://www.ncbi.nlm.nih.gov/pubmed/29745439 https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.13370]]>

Emerging Role of (Endo)Cannabinoids in Migraine.

Image result for frontiers in pharmacology “In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment.” https://www.ncbi.nlm.nih.gov/pubmed/29740328
]]>