Effect of anandamide on endometrial adenocarcinoma (Ishikawa) cell numbers: implications for endometrial cancer therapy.

The Lancet logo

“We have previously shown that patients with endometrial carcinoma express elevated concentrations of the endocannabinoid, anandamide (AEA), in both their plasma and their endometrial tissue and that the endometrial carcinoma cell line, Ishikawa, contains the receptors to which AEA binds.

Several studies have reported that human and rodent cancer cell lines die in response to high AEA concentrations.

The incidence of endometrial carcinoma continues to escalate and, although surgical treatment has improved, morbidity and mortality rates have not. A move towards a novel non-surgical therapeutic option is thus required, and the endocannabinoid system provides a good candidate target.

We aimed to investigate the effects of AEA on the survival and proliferation of an endometrial carcinoma cell model.

Our results show that AEA induces a decrease in Ishikawa cell number probably through inhibition of cell proliferation rather than cell death.

These data suggest that the increased plasma and tissue AEA concentrations observed in patients with endometrial cancer is a counter mechanism against further cancer growth and points to the endocannabinoid system as a potentially new therapeutic target.”

http://www.ncbi.nlm.nih.gov/pubmed/26312842

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)60335-X/fulltext

On the effects of CP 55-940 and other cannabinoid receptor agonists in C6 and U373 cell lines.

“Cannabinoid receptor (CBs) agonists affect the growth of tumor cells via activation of deadly cascades. The spectrum of action of these agents and the precise role of the endocannabinoid system (ECS) on oncogenic processes remain elusive.

Herein we compared the effects of synthetic (CP 55-940 and WIN 55,212-2) and endogenous (anandamide or AEA) CBs agonists (10-20 μM) on morphological changes, cell viability, and induction of apoptosis in primary astrocytes and in two glioblastoma cell lines (C6 and U373 cells) in order to characterize their possible differential actions on brain tumor cells.

None of the CBs agonist tested induced changes in cell viability or morphology in primary astrocytes.

In contrast, CP 55-940 significantly decreased cell viability in C6 and U373 cells at 5 days of treatment, whereas AEA and WIN 55,212-2 moderately decreased cell viability in both cell lines. Treatment of U373 and C6 for 3 and 5 days with AEA or WIN 55,212-2 produced discrete morphological changes in cell bodies, whereas the exposure to CP 55-940 induced soma degradation. CP 55-940 also induced apoptosis in both C6 and U373 cell lines.

Our results support a more effective action of CP 55-940 to produce cell death of both cell lines through apoptotic mechanisms. Comparative aspects between cannabinoids with different profiles are necessary for the design of potential treatments against glial tumors.”

http://www.ncbi.nlm.nih.gov/pubmed/26255146

The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55,212-2 for the Treatment of Cancer.

“Synthetic cannabinoid WIN55,212-2 (WIN) has shown a promise as an anticancer agent but causes psychoactive side-effects.

In the present study, nano-micelles of styrene maleic acid (SMA)-conjugated WIN were synthesized to reduce side-effects and increase drug efficacy…

SMA-WIN demonstrated characteristics theorized to improve in vivo drug biodistribution.

Potent cytotoxicity was found against breast and prostate cancer cells in vitro, showing promise as a novel treatment against breast and prostate cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/26254360

The levels of the endocannabinoid receptor CB2 and its ligand 2-arachidonoylglycerol are elevated in endometrial carcinoma.

Issue Cover

“The endocannabinoid system plays protective roles against the growth and the spreading of several types of carcinomas.

Because estrogens regulate this system both in physiological states and cancer, in this paper we evaluated its involvement in endometrial carcinoma, a well-known estrogen-dependent tumor.

In conclusion, the endocannabinoid system seems to play an important role in human endometrial carcinoma, and modulation of CB(2) activity/expression may account for a tumor-suppressive effect.”

http://www.ncbi.nlm.nih.gov/pubmed/20133454

https://academic.oup.com/endo/article/151/3/921/2456492

Bone cell-autonomous contribution of type 2 cannabinoid receptor to breast cancer induced osteolysis.

“The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumour growth, bone remodelling and bone pain.

However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here, we found that the CB2 selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micro-molar concentrations…

When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands, depending upon cell type and concentration used.

We therefore conclude that both, CB2 selective activation and antagonism have potential efficacy in cancer associated bone disease but further studies are warranted and ongoing.”

Phytocannabinoids for Cancer Therapeutics: Recent Updates and Future Prospects.

“Phytocannabinoids (pCBs) are lipid-soluble phytochemicals present in the plant, Cannabis sativa L. and non-cannabis plants which have a long history in traditional and recreational medicine.

The plant and constituents were central in the discovery of the endocannabinoid system, the most new target for drug discovery.

The endocannabinoid system includes two G protein-coupled receptors; the cannabinoid receptors-1 and -2 (CB1 and CB2) for marijuana’s psychoactive principle ∆(9)-tetrahydrocannabinol (∆9-THC), their endogenous small lipid ligands; namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), also known as endocannabinoids and the proteins for endocannabinoid biosynthesis and degradation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

The endocannabinoid system has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during pathological conditions including cancer.

Targeting the CB1 receptors become a concern because of adverse psychotropic reactions. Hence, targeting the CB2 receptors or the endocannabinoid metabolizing enzyme by phytocannabinoids obtained from non-cannabis plant lacking psychotropic adverse reactions has garnered interest in drug discovery.

These pCBs derived from plants beyond cannabis appear safe and effective with a wider access and availability.

In recent years, several pCBs derived other than non-cannabinoid plants have been reported to bind to and functionally interact with cannabinoid receptors and appear promising candidate for drug development in cancer therapeutics.

Several of them also target the endocannabinoid metabolizing enzymes that control endocannabinoid levels. In this article, we summarize, critically discuss the updates and future prospects of the pCBs as novel and promising candidates for cancer therapeutics.”

http://www.ncbi.nlm.nih.gov/pubmed/26179998

http://www.thctotalhealthcare.com/category/cancer/

Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor

Logo of nihpa

“We have previously shown that AEA exerts growth-suppressing effects on cholangiocarcinoma by inducing apoptosis.

At the time, we assumed that AEA was acting via a receptor-independent mechanism.

However, given the recent discovery and characterization of GPR55 as a novel AEA receptor, our data need to be reassessed to determine if GPR55 activation can decrease cholangiocarcinoma cell proliferation.

Thus, our aims are to determine if these AEA-mediated effects on cholangiocarcinoma cell growth can be attributed to the activation of GPR55.

This data represent the first evidence that GPR55 activation by anandamide can lead to the recruitment and activation of the Fas death receptor complex and that targeting GPR55 activation may be a viable option for the development of therapeutic strategies to treat cholangiocarcinoma.

In conclusion, we have clearly demonstrated a role for GPR55 in the antiproliferative effects of AEA in vivo andin vitro

Cholangiocarcinoma has a very poor prognosis and survival rate; therefore we propose that the development of novel therapeutic strategies that target GPR55 may prove beneficial for the treatment of this devastating disease.

Consistent with our observation that AEA has antiproliferative and pro-apoptotic properties, cannabinoids of various origins (endogenous, plant-derived or synthetic analogues) have been shown to suppress cancer cell growth in vitro as well as in vivo.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126905/

 

The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway.

Logo of ajpgi

“Cholangiocarcinomas are cancers that have poor prognosis and limited treatment options.

Marijuana and its derivatives have been used in medicine for many centuries.

…cannabinoids might be effective antitumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture and in laboratory animals.

Indeed, we have recently demonstrated that the endocannabinoid anandamide (AEA) has antiproliferative effects on cholangiocarcinoma cell lines in vitro via a cannabinoid receptor-independent pathway involving the stabilization of lipid raft-membrane structures and the recruitment of death-receptor complexes into the lipid rafts.

Modulation of the endocannabinoid system may be important in cholangiocarcinoma treatment.

The antiproliferative actions of the noncanonical Wnt signaling pathway warrants further investigation to dissect the mechanism by which this may occur.

We propose that the development of novel therapeutic strategies aimed at modulating the endocannabinoid system, or mimicking the mode of action of AEA, would prove beneficial for the treatment of this devastating disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604798/

 

Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

Logo of nihpa

“Cholangiocarcinomas are devastating cancers of intrahepatic and extrahepatic origin that are increasing in both their worldwide incidence and mortality rates.

Conventional chemotherapy and radiation therapy are not effective in prolonging long-term survival; therefore it is important to understand the cellular mechanisms of cholangiocarcinoma cell growth with a view to develop novel chemopreventive strategies.

We have recently demonstrated that the endocannabinoids anandamide (AEA) and 2-arachidonyl glycerol (2-AG) exert opposing effects on cholangiocarcinoma cell growth in vitro via cannabinoid receptor-independent mechanisms.

AEA increased presenilin 1 expression and recruitment into the γ-secretase complex whereas 2-AG increased expression and recruitment of presenilin 2.

The development of novel therapeutic strategies aimed at modulating the endocannabinoid system, or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

We propose that the development of novel therapeutic strategies aimed at modulating the endocannabinoid system, or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for the treatment of this devastating disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872061/