Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis.

Image result for life sciences journal

“Treatment of colitis has remained a major clinical challenge.

The cannabinoid, 2-arachidonoyglycerol (2-AG), has shown beneficial effects in colitis, however, poor solubility or rapid hydrolysis may limit its efficiency. According to the high biocompatibility of carbon nanotubes (CNTs) and their ability for controlled drug delivery, we aimed to prepare multi-walled CNTs-2-AG (MWCNTs-2-AG) complex in order to improve the pharmacological profile of 2-AG and evaluate the therapeutic potential of this nanocomplex in a rat model of colitis.

Aminated MWCNTs and MWCNTs-2-AG complex exhibited significantly lower cytotoxicity than acidified MWCNTs. Once daily intrarectal application of MWCNTs-2-AG complex (containing 2mg/kg of 2-AG) 2days before and 8days after the induction of colitis effectively reduced the macroscopic and microscopic injuries, malondialdehyde, tumour necrosis factor-α, and interlukin-1β concentrations, and myeloperoxidase activity. While, free 2-AG (2mg/kg), and acidified or aminated MWCNTs showed no beneficial effects.

SIGNIFICANCE:

Amino-functionalized MWCNTs appear as the suitable carriers for 2-AG which provide a sustained concentration for this cannabinoid leading to the promising therapeutic effects in the experimental colitis.”

https://www.ncbi.nlm.nih.gov/pubmed/27888115

Endocannabinoid system in sexual motivational processes: is it a novel therapeutic horizon?

Image result for pharmacological research logo

“The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana’s psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors.

For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment.

In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.”

https://www.ncbi.nlm.nih.gov/pubmed/27884725

“Cannabis As An Aphrodisiac? The Evidence Is Mounting”  https://www.civilized.life/articles/aphrodisiac-evidence-is-mounting/

Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

Image result for medicinal research reviews

“The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions.

A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years.

In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators.

A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists.

Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands.

This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators.

The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/27879006

Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence

Logo of frontpharmacol

“There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds.

The endocannabinoid system has been suggested to represent a potential new target in this indication.

Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys.

After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile.

As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations.

The antipsychotic potential of cannabidiol has been investigated in various behavioral paradigms and different animal models of aspects of schizophrenia.

Although the results were partially inconsistent, they indicate that cannabidiol treatment ameliorates impairments of PPI, social interaction behavior and cognition in rodents and rhesus monkeys.

In addition, individual treatment attempts as well as one randomized, double-blind clinical study, demonstrated the antipsychotic potential of cannabidiol and its superior side effect profile compared to conventional antipsychotics. In addition, a recently conducted clinical trial investigating cannabidiol as an add-on medication showed promising results, although these have not yet been published in a peer reviewed process.

Obviously more clinical trials are needed to substantiate the current findings, and in particular to investigate long-term efficacy and safety in larger cohorts.

However, cannabidiol seems to represent a mechanistically different and less side-effect prone antipsychotic compound for the treatment of schizophrenia, even though the underlying pharmacological mechanisms are still under debate.

Nevertheless, the association between increased anandamide levels and reduced psychotic symptoms in schizophrenic patients treated with cannabidiol, points to a potentially new antipsychotic mechanism of action involving anandamide.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099166/

Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration.

Image result for plos one

“Experimental studies demonstrated that saffron (Crocus sativus) given as a dietary supplement counteracts the effects of bright continuous light (BCL) exposure in the albino rat retina, preserving both morphology and function and probably acting as a regulator of programmed cell death.

The purpose of this study was to ascertain whether the neuroprotective effect of saffron on rat retina exposed to BCL is associated with a modulation of the endocannabinoid system (ECS).

These data suggest that BCL modulates only distinct ECS elements like CB1 and CB2, and that saffron and cannabinoid receptors could share the same mechanism in order to afford retinal protection.”

Overactivation of cannabinoid receptor type 1 in rostral ventrolateral medulla promotes cardiovascular responses in spontaneously hypertensive rats.

 

Image result for J Hypertens.

“Stimulation of cannabinoid type 1 (CB1) receptor in the rostral ventrolateral medulla (RVLM) increases renal sympathetic nerve activity (RSNA) and blood pressure (BP) in rats.

Thus, we hypothesized that abnormal expression of CB1 receptor in the RVLM may play a critical role in the pathogenesis of essential hypertension.

Taken together, our results suggested that alterations of CB1 receptor desensitization in the RVLM may play a role in the pathogenesis of essential hypertension.”

https://www.ncbi.nlm.nih.gov/pubmed/27861247

Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance.

Image result for endocrine journal

“We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone.

CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity.

Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue.

CNR1 is upregulated in states of type 2 diabetes and insulin resistance.

Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis.

Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.”

https://www.ncbi.nlm.nih.gov/pubmed/27858284

A Science Based Evaluation of Cannabis and Cancer

Image result for thebmj

“The irritant properties of all smoke will naturally tend to promote a pro-inflammatory immune response with the corresponding production of potentially carcinogenic free radicals. However, cannabis promotes immune deviation to an anti-inflammatory Th2 response via immune-system specific CB2 receptors. Thus, the natural pharmacological properties of marijuana’s cannabinoids, that are not present in tobacco smoke, would minimize potential irritant initiated carcinogenesis. In contrast, the pharmacological activities of tobacco smoke would tend to amplify its carcinogenic potential by inhibiting the death of genetically damaged cells. Together these observations support the epidemiological study of the Kaiser Foundation that did not find cannabis smoking to be associated with cancer incidence. Additionally, the demonstrated cancer killing activities of cannabinoids has been ignored. Cannabinoids have been shown to kill some leukemia and lymphoma, breast and prostate, pheochromocytoma, glioma and skin cancer cells in cell culture and in animals.” http://www.bmj.com/rapid-response/2011/10/29/science-based-evaluation-cannabis-and-cancer

Highest-resolution model to date of brain receptor behind marijuana’s high

“Researchers at UT Southwestern Medical Center report the most detailed 3-D structure to date of the brain receptor that binds and responds to the chemical at the root of marijuana’s high.

Their high-resolution structure of the human cannabinoid receptor 1 (CB1) and its binding site for the chemical tetrahydrocannabinol (THC) should lead to a better understanding of how marijuana affects the brain.

The research also could aid discovery of new treatments for conditions that target the receptor, said Dr. Daniel Rosenbaum, Assistant Professor of Biophysics and Biochemistry at UT Southwestern.”

https://www.sciencedaily.com/releases/2016/11/161116131935.htm

High-resolution crystal structure of the human CB1 cannabinoid receptor.

Image result for Nature journal

“The human cannabinoid G-protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ9-tetrahydrocannabinol (THC)1. The cannabinoid receptors have been the targets of intensive drug discovery efforts owing to the therapeutic potential of modulators for controlling pain2, epilepsy3, obesity4, and other maladies. Although much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. The extracellular surface of CB1, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.”