Potential Therapeutic Value of a Novel FAAH Inhibitor for the Treatment of Anxiety.

“Anxiety disorders are among the most prevalent psychiatric diseases with high personal costs and a remarkable socio-economic burden. However, current treatment of anxiety is far from satisfactory.

Novel pharmacological targets have emerged in the recent years, and attention has focused on the endocannabinoid (eCB) system, given the increasing evidence that supports its central role in emotion, coping with stress and anxiety.

In the management of anxiety disorders, drug development strategies have left apart the direct activation of type-1 cannabinoid receptors to indirectly enhance eCB signalling through the inhibition of eCB deactivation, that is, the inhibition of the fatty acid amide hydrolase (FAAH) enzyme.

In the present study, we provide evidence for the anxiolytic-like properties of a novel, potent and selective reversible inhibitor of FAAH, ST4070, orally administered to rodents.

Altogether, ST4070 offers a promising anxiolytic-like profile in preclinical studies, although further studies are warranted to clearly demonstrate its efficacy in the clinic management of anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26360704

Anandamide mediates cognitive judgement bias in rats.

“In the present study, we investigated the effects of acute pharmacological manipulation of the endocannabinoid (EC) system on the valence of cognitive judgement bias of rats in the ambiguous-cue interpretation (ACI) paradigm.

Our findings suggest involvement of the endocannabinoid system in the mediation of optimistic judgement bias.”

http://www.ncbi.nlm.nih.gov/pubmed/26363193

Endocannabinoid regulation of amyloid-induced neuroinflammation.

“The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer’s disease (AD).

These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflammed brain.”

http://www.ncbi.nlm.nih.gov/pubmed/26362942

Cannabidiol and sodium nitroprusside: two novel neuromodulatory pharmacological interventions to treat and prevent psychosis.

“Since most patients with schizophrenia do not respond properly to treatment, scientific effort has been driven to the development of new compounds acting on pharmacological targets beyond the dopaminergic system.

Therefore, the aim is to review basic and clinical research findings from studies evaluating the effects of cannabidiol (CBD), an inhibitor of the reuptake and metabolism of anandamide and several other effects on nervous system, and sodium nitroprusside, a nitric oxide donor, on the prevention and treatment of psychosis.

Animal and human research supports that CBD and sodium nitroprusside might be effective in the prevention and treatment of psychosis in general and especially in schizophrenia.

The evidence available to date shows that CBD and sodium nitroprusside act in pathways associated with psychotic symptoms and that they may be important agents in the management of prodromal psychotic states and psychosis.

This underscores the relevance of further research on the effects of these agents and others that mediate the activity of the cannabinoid system and of nitric oxide, as well as comparative studies of their antipsychotic effects and those of other antipsychotic drugs currently used to treat schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/26350340

Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

“Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA.

Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol.

These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides.

In addition, many cell types in synovial tissue express CB1 and TRPs.

In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation.

We demonstrate how CB1 agonism or antagonism can modulate arthritic disease.

The concept of functional antagonism with continuous CB1 activation is discussed.

Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied.

Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26343051

High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity.

“Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost.

Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation.

However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain.

This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.”

http://www.ncbi.nlm.nih.gov/pubmed/26342110

“The plant Cannabis sativa has been used as a medicine throughout the world for several thousand years, with reports of its use in treating painful symptoms appearing as early as 2600 BC. The principal psychoactive ingredient of Cannabis sativa, delta-9-tetrahydrocannabinol (Δ9-THC), was first identified in 1964, and subsequent studies to understand its mechanism of action led to the discovery of the endogenous cannabinoid (endocannabinoid) system… Because of the distribution of the endocannabinoid system throughout spinal and supraspinal regions, it is in a prime position to regulate neurophysiological activities such as affective and nociceptive processing… evidence suggests a prominent role for the endocannabinoid system in the interaction between depression and pain,” http://ijnp.oxfordjournals.org/content/early/2015/09/04/ijnp.pyv095.long

Cannabinoids in the Treatment of Neurological Disorders

“The force of the recent explosion of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology.

Paradoxically, for 10 millennia this plant has been an integral part of human cultivation, where it was used for its fibers long before its pharmacological properties.

With regard to the latter, cannabis was well known to healers from China and India thousands of years ago; Greek and Roman doctors during classic times; Arab doctors during the Middle Ages; Victorian and Continental physicians in the nineteenth century; American doctors during the early twentieth century; and English doctors until 1971 when a variety of nonevidence-based remedies were removed from the British Pharmaceutical Codex.

The clinical data on cannabis therapeutics are meager and the vast majority are formed by surveys or small studies that are underpowered and/or suffer from multiple methodological flaws, often by virtue of limited research funding for nonaddiction-focused studies. Thus, we know relatively little about the clinical efficacy of cannabinoids for the various neurological disorders for which historical nonscientific and medical literature have advocated its use.

The relative scarcity of proven cannabis-based therapies is not due to data that show that cannabinoids are ineffective or unsafe, but rather reflects a poverty of medical interest and a failure by pharmaceutical companies arising from regulatory restrictions compounded by limits for patent rights on plant cannabinoid-containing preparations that have been used medicinally for millennia, as is the case for most natural products.

We are pleased to have gathered many of the world’s experts together on the basic biology of cannabinoids, as well as their potential role in treating neurologic and psychiatric disorders…

We hope that this issue of Neurotherapeutics will serve to mark the bounds of verifiable scientific knowledge of cannabinoids in the treatment of neuropsychiatric and neurological disorders. At the same time, our contributors have also helped identify areas for future research, as well as the strategies needed to move our base of knowledge forward.

We hope that this volume will help to accelerate the pace of the appropriately focused and productive research and double-blind placebo-controlled randomized trials to the point at which the care of patients is informed by valid data and not just anecdote.”

http://link.springer.com/article/10.1007/s13311-015-0388-0/fulltext.html

G protein-coupled receptor 18: A potential role for endocannabinoid signalling in metabolic dysfunction.

“Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels.

Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid-derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression.

These cannabinoid receptors are part of a large family of G protein-coupled receptors (GPCRs).

GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus.

Obesity is considered a state of chronic low grade inflammation elicited by an immunological response.

Interestingly, the newly deorphanised G protein-coupled receptor GPR18, which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function.

In this review, the current scientific knowledge on GPR18 is explored including its localisation, signalling pathways and pharmacology.

Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described.

Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26337420

Fatty acids, endocannabinoids and inflammation.

“From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system.

However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems.

Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides.

With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation.

A key feature of this ‘expanded’ endocannabinoid system, or ‘endocannabinoidome’, is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities.

Following an update on the role of the ‘endocannabinoidome’ in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners.

Although its pleiotropic character poses scientific challenges, the ‘expanded’ endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases.

In this respect, successes are more likely to come from ‘multiple-target’ than from ‘single-target’ strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/26325095

Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

“Hepatic injury undergoes significant increases in endocannabinoids and infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear…

In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of Bone marrow-derived monocytes/macrophages (BMM) into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis.

In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.”

http://www.ncbi.nlm.nih.gov/pubmed/26320250