The anandamide analog, Met-F-AEA, controls human breast cancer cell migration via the RHOA/RHO kinase signaling pathway.

“The endocannabinoid system regulates cell proliferation and migration in human breast cancer cells. In this study, we showed that a metabolically stable analog of anandamide, 2-methyl-2′-F-anandamide (Met-F-AEA), inhibited the RHOA activity and caused a RHOA delocalization from the cell membrane to cytosol determining a decrease in actin stress fibers. Overexpression of a dominant negative of RHOA activity and treatment of these cells with a RHO-associated protein kinase (ROCK) inhibitor, Y 27632, mimicked Met-F-AEA effects on actin organization and cell migration. We suggest that the inhibitory effect of Met-F-AEA on tumor cell migration could be related to RHOA-ROCK-dependent signaling pathway.”

http://www.ncbi.nlm.nih.gov/pubmed/18676619

The endocannabinoid system in the cancer therapy: an overview.

“The endocannabinoid system comprises the cannabinoid receptors type 1 (CB1) and type 2 (CB2), their endogenous ligands (endocannabinoids), and the proteins responsible for their biosynthesis and degradation. This ubiquitous signalling system, that has attracted a great deal of scientist interest in the past 15 years, regulates several physiological and pathological functions. In mammals, among other functions, the endocannabinoid is involved in nervous, cardiovascular, metabolic, reproductive and immune functions. Finally, yet importantly, endocannabinoids are known to exert important antiproliferative actions in a great number of tumor cells including breast, brain, skin, thyroid, prostate and colorectal. The following review describes our current knowledge on the effects of two of the most studied endocannabinoids (AEA and 2-AG) on various types of tumor and summarizes the possible mechanism of observed antitumor effects.”  http://www.ncbi.nlm.nih.gov/pubmed/21428888

http://www.eurekaselect.com/73874/article

The endocannabinoid system and cancer: therapeutic implication

Logo of brjpharm

“The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others).

The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system.

Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer.

This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed.

Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients.

Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted.” http://www.ncbi.nlm.nih.gov/pubmed/21410463

“The available literature suggests that the endocannabinoid system may be targeted to suppress the evolution and progression of breast, prostate and bone cancer as well as the accompanying pain syndromes. Many in vitro and in vivo studies have shown that cannabinoids are efficacious in reducing cancer progression (i.e. inhibition of tumour growth and metastases as well as induction of apoptosis and other anti-cancer properties) in breast, prostate and bone cancer. Although this review focuses on these three types of cancer, activation of the endocannabinoid signalling system produces anti-cancer effects in other types of cancer.” http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01327.x/full

Cannabis: Time for Scientific Evaluation of This Ancient Remedy?

” It is clear, therefore, that there is sufficient anecdotal clinical data and sound experimental data to encourage proper scientific evaluation of the potential therapeutic benefit of cannabis. Although it undoubtedly possesses the potential for psychic and physical dependency, these are considerably less than the undesirable effects of opioids. The time is now appropriate, therefore, for proper evaluation of this ancient remedy.”

http://www.anesthesia-analgesia.org/content/90/2/237.long

Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis

“Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis…The endocannabinoid system and cannabimimetic compounds protect against effects of allergic inflammatory disorders in various species of mammals. Results of the present study contributed to knowledge of the endocannabinoid system and indicated this system may be a target for treatment of immune-mediated and inflammatory disorders such as allergic skin diseases in dogs.”

http://www.ncbi.nlm.nih.gov/pubmed/22738050

CANNABINOIDS: POTENTIAL ANTICANCER AGENTS

The study by Manuel Guzmán of Madrid Spain found that cannabinoids, the active components of marijuana, inhibit tumor growth in laboratory animals. They do so by modulating key cell-signalling pathways, thereby inducing direct growth arrest and death of tumor cells, as well as by inhibiting the growth of blood vessels that supply the tumor.

http://americanmarijuana.org/Guzman-Cancer.pdf 

The emerging role of the endocannabinoid system in cardiovascular disease

“… the EndoCannabinoid System has been implicated in a growing number of physiological functions of the nervous system and various peripheral organs, and its modulation turned out to hold tremendous therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders, neuropathic pain, multiple sclerosis, and spinal cord injury to cancer, glaucoma, osteoporosis, atherosclerosis, myocardial infarction, stroke, hypertension, and obesity/ metabolic syndrome to name just a few…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791499/?tool=pubmed

The endocannabinoid system in prostate cancer

“Accumulating evidence indicate that the endocannabinoid system is dysregulated in prostate cancer… Overexpression of several components of the endocannabinoid system correlate with prostate cancer grade and progression, potentially providing a new therapeutic target for prostate cancer… several cannabinoids exert antitumoral properties against prostate cancer, reducing xenograft prostate tumor growth, prostate cancer cell proliferation and cell migration… the therapeutic potential of cannabinoids against prostate cancer is very promising…”

http://www.ncbi.nlm.nih.gov/pubmed/21912423