Ischemia/Reperfusion Model Impairs Endocannabinoid Signaling and Na+/K+ ATPase Expression and Activity in Kidney Proximal Tubule Cells.

“LLC-PK1 cells, an immortalized epithelial cell line derived from pig renal proximal tubules, express all the major players of the endocannabinoid system (ECS) such as CB1, CB2 and TRPV1 receptor, as well as the main enzymes involved in the biosynthesis and degradation of the major endocannabinoids named 2-arachidonoylglycerol, 2-AG and anandamide, AEA. Here we investigated whether the damages caused by ischemic insult either in vitro using LLC-PK1 cells exposed to antimycin A (an inductor of ATP-depletion) or in vivo using Wistar rats in a classic renal ischemia and reperfusion (IR) protocol, lead to changes in AEA and 2-AG levels, as well as altered expression of genes from the main enzymes involved in the regulation of the ECS. Our data show that the mRNA levels of CB1 receptor gene were downregulated, while the transcript levels of monoacylglycerol lipase (MAGL), the main 2-AG degradative enzyme, are upregulated in LLC-PK1 cells after IR model. Accordingly, IR was accompanied by a significant reduction in the levels of 2-AG and AEA, as well as of the two endocannabinoid related molecules, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in LLC-PK1 cells. In kidney cortex homogenates, the AEA levels were selectively significantly decreased. In addition, we found that both the in vitro and in vivo model of IR caused a reduction in the expression and activity of the Na+/K+ATPase. These changes were reversed by the CB1/CB2 agonist WIN55,212, in a CB1-receptor dependent manner on LLC-PK1 IR model. In conclusion, the ECS and Na+/K+ ATPase are down-regulated following IR model in LLC-PK1 cells and rat kidney. We suggest that CB1 agonists might represent a potential strategy to reverse the consequences of IR injury in kidney tissues.” https://www.ncbi.nlm.nih.gov/pubmed/29890144 https://www.sciencedirect.com/science/article/pii/S0006295218302132]]>

The Lateral Habenula Directs Coping Styles Under Conditions of Stress Via Recruitment of the Endocannabinoid System.

“The ability to effectively cope with stress is a critical determinant of disease susceptibility. The lateral habenula (LHb) and the endocannabinoid (ECB) system have independently been shown to be involved in the selection of stress coping strategies, yet the role of ECB signaling in the LHb remains unknown.

CONCLUSIONS:

Alterations in LHb ECB signaling may be relevant for development of stress-related pathologies in which LHb dysfunction and stress-coping impairments are hallmark symptoms.” https://www.ncbi.nlm.nih.gov/pubmed/29887035 https://www.biologicalpsychiatryjournal.com/article/S0006-3223(18)31473-2/fulltext

“Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood.” https://www.ncbi.nlm.nih.gov/pubmed/27317195

]]>

Activation of GPR55 increases neural stem cell proliferation and promotes early adult hippocampal neurogenesis

“The cannabinoid system exerts functional regulation of neural stem cell (NSC) proliferation and adult neurogenesis, yet not all effects of cannabinoid-like compounds seen can be attributed to the cannabinoid 1 receptor (CB1 R) or cannabinoid 2 receptor (CB2 R). The recently de-orphaned GPR55 has been shown to be activated by numerous cannabinoid ligands suggesting that GPR55 is a third cannabinoid receptor. Here we examined the role of GPR55 activation in NSC proliferation and early adult neurogenesis.

CONCLUSIONS AND IMPLICATIONS:

Together, these findings suggest GPR55 activation as a novel target and strategy to regulate NSC proliferation and adult neurogenesis.” https://www.ncbi.nlm.nih.gov/pubmed/29888782 https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14387

“The orphan receptor GPR55 is a novel cannabinoid receptor”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095107/

]]>

Probing the endocannabinoid system in healthy volunteers: Cannabidiol alters fronto-striatal resting-state connectivity.

European Neuropsychopharmacology Home “Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are two substances from cannabis sativa that have been implicated in the treatment of mental and neurological disorders. We concentrated on a previously validated neuroimaging phenotype, fronto-striatal connectivity across different striatal seeds, because of this loop’s relevance to executive functioning, decision making, salience generation and motivation and its link to various neuropsychiatric conditions. Therefore, we studied the effect of THC and CBD on fronto-striatal circuitry by a seed-voxel connectivity approach using seeds from the caudate and the putamen. We conducted a cross-over pharmaco-fMRI study in 16 healthy male volunteers with placebo, 10 mg oral THC and 600 mg oral CBD. Resting state was measured in a 3 T scanner. CBD lead to an increase of fronto-striatal connectivity in comparison to placebo. In contrast to our expectation that THC and CBD show opposing effects, THC versus placebo did not show any significant effects, probably due to insufficient concentration of THC during scanning.
The effect of CBD on enhancing fronto-striatal connectivity is of interest because it might be a neural correlate of its anti-psychotic effect in patients.”
]]>