
“Fragile X Syndrome is a neurodevelopmental disorder which affects intellectual, social and physical development due to mutation of the Fragile X mental retardation 1 (FMR1) gene. The resultant loss of Fragile X mental retardation protein can be modelled by Fmr1 gene knockout (KO) in mice.
The current study investigated the behavioural effects of cannabidiol (CBD; a non-psychoactive phytocannabinoid) in male Fmr1 KO mice as a preclinical model for therapeutic discovery.
Overall, acute CBD at the doses chosen did not selectively normalize behavioural abnormalities in Fmr1 KO mice, but reduced anxiety-like behaviour in both Fmr1 KO and WT mice.” https://www.ncbi.nlm.nih.gov/pubmed/31063743
“Acute cannabidiol (CBD) decreased anxiety-related behaviours in both Fmr1 knockout mice and wildtype controls in the elevated plus maze. Fmr1 KO mice were hyperlocomotive, showed fewer anxiety-related behaviours and habituated more slowly to a novel environment than controls. Acute CBD had no impact on locomotion, spatial working memory or fear-associated memory in Fmr1 knockout mice or controls.” https://www.sciencedirect.com/science/article/pii/S0091305718306464?via%3Dihub



“Inflammation as well as glutamate excitotoxicity have been proposed to participate in the propagation of autism. Palmitoylethanolamide (PEA) is an 
“Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.”

“We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome).
Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice.
The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD.