Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells

“Plant-derived cannabinoids, such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the main psychoactive and nonpsychoactive components of cannabis, respectively, possess myriad pharmacological properties…

Cannabidiol (CBD), a prominent psychoinactive component of cannabis with negligible affinity for known cannabinoid receptors, exerts numerous pharmacological actions, including anti-inflammatory and immunosuppressive effects…

Together, these results support existence of yet-to-be identified sites of interaction, i.e., receptors and/or ion channels associated with Ca2+ influx of natural cannabinoids such as CBD and THC, the identification of which has the potential to provide for novel strategies and agents of therapeutic interest.”

Full text: http://www.jleukbio.org/content/81/6/1512.long

Gamma-irradiation enhances apoptosis induced by cannabidiol, a non-psychotropic cannabinoid, in cultured HL-60 myeloblastic leukemia cells.

“Two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabidiol-dimethylheptyl (CBD-DMH), induced apoptosis in a human acute myeloid leukemia (AML) HL-60 cell line…

  Caspase-3 activation was observed after the cannabinoid treatment, and may represent a mechanism for the apoptosis.

Our data suggest a possible new approach to treatment of AML.”

http://www.ncbi.nlm.nih.gov/pubmed/14692532

Tetrahydrocannabinol inhibits adenyl cyclase in human leukemia cells.

“Delta 9-tetrahydrocannabinol has been shown to induce incomplete maturation in ML2 human leukemia cell lines.

We extend the observation of its induction of morphologic maturation to HL60 cells and of its induction of growth restriction to HL60 and K562 cells.

 We show that tetrahydrocannabinol reduces the cyclic AMP content of ML2 cells.

 Finally we demonstrate that this agent inhibits adenyl cyclase activity in ML2 cell membrane-enriched fractions.

This finding in myeloid cells is compatible with one hypothesis of cannabinoid action in neuronal cells.”

http://www.ncbi.nlm.nih.gov/pubmed/2154651

Cannabinoids induce incomplete maturation of cultured human leukemia cells.

“Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 microM delta 9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana…

 Cannabinoids induce incomplete maturation of cultured human leukemia cells…

Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC298868/

Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease

“In the current study, we examined whether ligation of CB2 receptors would lead to induction of apoptosis in tumors of immune origin and whether CB2 agonist could be used to treat such cancers.

 Exposure of murine tumors EL-4, LSA, and P815 to delta-9-tetrahydrocannabinol (THC) in vitro led to a significant reduction in cell viability and an increase in apoptosis…

Culture of primary acute lymphoblastic leukemia cells with THC in vitro reduced cell viability and induced apoptosis.

Together, the current data demonstrate that CB2 cannabinoid receptors expressed on malignancies of the immune system may serve as potential targets for the induction of apoptosis. Also, because CB2 agonists lack psychotropic effects, they may serve as novel anticancer agents to selectively target and kill tumors of immune origin.”

http://bloodjournal.hematologylibrary.org/content/100/2/627.long

“We examined whether treatment of tumor-bearing mice with THC was effective at killing tumor cells in vivo… These data suggest that THC was effective in vivo to induce apoptosis and kill the tumor cells… THC treatment can cure tumor-bearing mice… they were completely cured…Taken together, these results suggest that THC can exert anticancer properties in vivo.” http://bloodjournal.hematologylibrary.org/content/100/2/627.long?sso-checked=1

 

Targeting cannabinoid receptors to treat leukemia: role of cross-talk between extrinsic and intrinsic pathways in Delta9-tetrahydrocannabinol (THC)-induced apoptosis of Jurkat cells.

“Targeting cannabinoid receptors has recently been shown to trigger apoptosis and offers a novel treatment modality against malignancies of the immune system.

  In this study, we used human Jurkat leukemia cell lines with defects in intrinsic and extrinsic signaling pathways to elucidate the mechanism of apoptosis induced by Delta9-tetrahydrocannabinol (THC)…

Together, these data suggest that the intrinsic pathway plays a more critical role in THC-induced apoptosis while the extrinsic pathway may facilitate apoptosis via cross-talk with the intrinsic pathway.”

http://www.ncbi.nlm.nih.gov/pubmed/15978942

Cannabinoid-receptor expression in human leukocytes.

“Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery.

Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes…

The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells.”

http://www.ncbi.nlm.nih.gov/pubmed/8508790

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Cannabis Ingredient Can Help Cancer Patients Regain Their Appetites And Sense Of Taste

MNT home

“The active ingredient in cannabis can improve the appetites and sense of taste in cancer patients, according to a new study published online in the cancer journal, Annals of Oncology  today.

Loss of appetite is common among cancer patients, either because the cancer itself or its treatment affects the sense of taste and smell, leading to decreased enjoyment of food. This, in turn, can lead to weight loss, anorexia, a worse quality of life and decreased survival; therefore, finding effective ways of helping patients to maintain a good diet and consume enough calories is an important aspect of their treatment.

The majority of THC-treated patients (64%) had increased appetite, three patients (27%) showed no change, and one patient’s data was incomplete. No THC-treated patients showed a decrease in appetite. By contrast, the majority of patients receiving placebo had either decreased appetite (50%) or showed no change (20%).

Although there was no difference in the total number of calories consumed by both groups, the THC-treated patients tended to increase the proportion of protein that they ate, and 55% reported that savoury foods tasted better, whereas no patients in the placebo group reported an increased liking for these foods. (Cancer patients often find that meat smells and tastes unpleasant and, therefore, they eat less of it).

In addition, THC-treated patients reported better quality of sleep and relaxation than in the placebo group.”

More:  http://www.medicalnewstoday.com/articles/217062.php

Fighting Cancer: Another Study Reveals the Cannabis and Cancer Prevention Link

“Does marijuana cause cancer? Revealing the link between cannabis and cancer yet again, researchers with the California Pacific Medical Center in San Francisco have released findings that further bolster cannabis as an anti-cancer solution.
The researchers have found a compound in the much-talked-about plant could “halt the spread” of many types of aggressive cancers, including breast cancer.

The Cannabis and Cancer Link

Cannabidiol is the compound, and while it fights cancer cells, it does not produce the high feelings commonly associated with cannabis. Instead, it seems to “switch off” the gene responsible for metastasizing breast cancer.

They reportedly found the compound doesn’t only stop the breast cancer cells from growing, but even causes them to return back to normal cells, cancer-free.”

More: http://naturalsociety.com/study-positive-cannabis-and-cancer-link/