Daily cannabis and reduced risk of steatosis in human immunodeficiency virus and hepatitis C virus co-infected patients (ANRS CO13-HEPAVIH).

Journal of Viral Hepatitis

“Liver steatosis is common in Human Immunodeficiency Virus (HIV) – Hepatitis C Virus (HCV) co-infected patients. Some recent studies have found that cannabis use is negatively associated with insulin resistance in the general population and in HIV-HCV co-infected patients.

Given the causal link between insulin resistance and steatosis, we hypothesized that cannabis use has a positive impact on steatosis.

Therefore, we aimed to study whether cannabis use in this population was associated with a reduced risk of steatosis, measured by ultrasound examination.

The ANRS CO13-HEPAVIH cohort is a French nationwide multicenter of HIV-HCV co-infected patients. Medical and socio-behavioral data from clinical follow-up visits and annual self-administered questionnaires were prospectively collected. A cross-sectional analysis was conducted using data from the first visit where both ultrasound examination data for steatosis (positive or negative diagnosis) and data on cannabis use were available. A logistic regression model was used to evaluate the association between cannabis use and steatosis. Among study sample patients (n=838), 40.1% had steatosis. Fourteen percent reported daily cannabis use, 11.7% regular use, and 74.7% no use or occasional use (“never or sometimes”).

Daily cannabisuse was independently associated with a reduced prevalence of steatosis (adjusted odds ratio [95%]=0.64 [0.42;0.99]; p=0.046), after adjusting for body mass index, hazardous alcohol consumption and current or lifetime use of lamivudine/zidovudine. Daily cannabisuse may be a protective factor against steatosis in HIV-HCV co-infected patients. These findings confirm the need for a clinical evaluation of cannabis-based pharmacotherapies in this population.”

https://www.ncbi.nlm.nih.gov/pubmed/28984055

http://onlinelibrary.wiley.com/doi/10.1111/jvh.12797/abstract

Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury.

“Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.”  https://www.ncbi.nlm.nih.gov/pubmed/28935932 “Cannabidiol (CBD) is the most abundant non-psychoactive constituent of marijuana plant (Cannabis Sativa) with excellent safety profile in humans even after chronic use. In conclusion, we demonstrate that CBD treatment significantly attenuates liver injury induced by chronic plus binge alcohol in a mouse model and oxidative burst in human neutrophils. CBD ameliorates alcohol-induced liver injury by attenuating inflammatory response involving E-selectin expression and neutrophil recruitment, and consequent oxidative/nitrative stress, in addition to attenuation of the alcohol-induced hepatic metabolic dysregulation and steatosis. These beneficial effects, coupled with the proven safety of CBD in human clinical trials and its current orphan drug approval by FDA for various indications suggest that it may have therapeutic potential in liver disease associated with inflammation, oxidative stress, metabolic dysregulation and steatosis.” https://www.nature.com/articles/s41598-017-10924-8]]>

Re-visiting the Endocannabinoid System and Its Therapeutic Potential in Obesity and Associated Diseases.

 Current Diabetes Reports

“The purpose of the review was to revisit the possibility of the endocannabinoid system being a therapeutic target for the treatment of obesity by focusing on the peripheral roles in regulating appetite and energy metabolism.

Previous studies with the global cannabinoid receptor blocker rimonabant, which has both central and peripheral properties, showed that this drug has beneficial effects on cardiometabolic function but severe adverse psychiatric side effects. Consequently, focus has shifted to peripherally restricted cannabinoid 1 (CB1) receptor blockers as possible therapeutic agents that mitigate or eliminate the untoward effects in the central nervous system. Targeting the endocannabinoid system using novel peripheral CB1 receptor blockers with negligible penetrance across the blood-brain barrier may prove to be effective therapy for obesity and its co-morbidities. Perhaps the future of blockers targeting CB1 receptors will be tissue-specific neutral antagonists (e.g., skeletal muscle specific to treat peripheral insulin resistance, adipocyte-specific to treat fat excess, liver-specific to treat fatty liver and hepatic insulin resistance).” https://www.ncbi.nlm.nih.gov/pubmed/28913816 https://link.springer.com/article/10.1007%2Fs11892-017-0924-x
]]>